1,647 research outputs found

    Cooperative co-evolution for feature selection in big data with random feature grouping

    Get PDF
    © 2020, The Author(s). A massive amount of data is generated with the evolution of modern technologies. This high-throughput data generation results in Big Data, which consist of many features (attributes). However, irrelevant features may degrade the classification performance of machine learning (ML) algorithms. Feature selection (FS) is a technique used to select a subset of relevant features that represent the dataset. Evolutionary algorithms (EAs) are widely used search strategies in this domain. A variant of EAs, called cooperative co-evolution (CC), which uses a divide-and-conquer approach, is a good choice for optimization problems. The existing solutions have poor performance because of some limitations, such as not considering feature interactions, dealing with only an even number of features, and decomposing the dataset statically. In this paper, a novel random feature grouping (RFG) has been introduced with its three variants to dynamically decompose Big Data datasets and to ensure the probability of grouping interacting features into the same subcomponent. RFG can be used in CC-based FS processes, hence called Cooperative Co-Evolutionary-Based Feature Selection with Random Feature Grouping (CCFSRFG). Experiment analysis was performed using six widely used ML classifiers on seven different datasets from the UCI ML repository and Princeton University Genomics repository with and without FS. The experimental results indicate that in most cases [i.e., with naïve Bayes (NB), support vector machine (SVM), k-Nearest Neighbor (k-NN), J48, and random forest (RF)] the proposed CCFSRFG-1 outperforms an existing solution (a CC-based FS, called CCEAFS) and CCFSRFG-2, and also when using all features in terms of accuracy, sensitivity, and specificity

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Image Retrieval Method Combining Bayes and SVM Classifier Based on Relevance Feedback with Application to Small-scale Datasets

    Get PDF
    A vast amount of images has been generated due to the diversity and digitalization of devices for image acquisition. However, the gap between low-level visual features and high-level semantic representations has been a major concern that hinders retrieval accuracy. A retrieval method based on the transfer learning model and the relevance feedback technique was formulated in this study to optimize the dynamic trade-off between the structural complexity and retrieval performance of the small- and medium-scale content-based image retrieval (CBIR) system. First, the pretrained deep learning model was fine-tuned to extract features from target datasets. Then, the target dataset was clustered into the relative and irrelative image library by exploring the Bayes classifier. Next, the support vector machine (SVM) classifier was used to retrieve similar images in the relative library. Finally, the relevance feedback technique was employed to update the parameters of both classifiers iteratively until the request for the retrieval was met. Results demonstrate that the proposed method achieves 95.87% in classification index F1 - Score, which surpasses that of the suboptimal approach DCNN-BSVM by 6.76%. The performance of the proposed method is superior to that of other approaches considering retrieval criteria as average precision, average recall, and mean average precision. The study indicates that the Bayes + SVM combined classifier accomplishes the optimal quantities more efficiently than only either Bayes or SVM classifier under the transfer learning framework. Transfer learning skillfully excels training from scratch considering the feature extraction modes. This study provides a certain reference for other insights on applications of small- and medium-scale CBIR systems with inadequate samples

    Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition

    Get PDF
    The base system in this paper uses Hidden Markov Models (HMMs) to model dynamic relationships among facial features in facial behavior interpretation and understanding field. The input of HMMs is a new set of derived features from geometrical distances obtained from detected and automatically tracked facial points. Numerical data representation which is in the form of multi-time series is transformed to a symbolic representation in order to reduce dimensionality, extract the most pertinent information and give a meaningful representation to humans. The main problem of the use of HMMs is that the training is generally trapped in local minima, so we used the Differential Evolution (DE) algorithm to offer more diversity and so limit as much as possible the occurrence of stagnation. For this reason, this paper proposes to enhance HMM learning abilities by the use of DE as an optimization tool, instead of the classical Baum and Welch algorithm. Obtained results are compared against the traditional learning approach and significant improvements have been obtained.</p
    • …
    corecore