102 research outputs found

    Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity

    Get PDF
    This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through Β±180Β° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex

    A Neural Network Model for the Development of Simple and Complex Cell Receptive Fields Within Cortical Maps of Orientation and Ocular Dominance

    Full text link
    Prenatal development of the primary visual cortex leads to simple cells with spatially distinct and oriented ON and OFF subregions. These simple cells are organized into spatial maps of orientation and ocular dominance that exhibit singularities, fractures, and linear zones. On a finer spatial scale, simple cells occur that are sensitive to similar orientations but opposite contrast polarities, and exhibit both even-symmetric and odd-symmetric receptive fields. Pooling of outputs from oppositely polarized simple cells leads to complex cells that respond to both contrast polarities. A neural network model is described which simulates how simple and complex cells self-organize starting from unsegregated and unoriented geniculocortical inputs during prenatal development. Neighboring simple cells that are sensitive to opposite contrast polarities develop from a combination of spatially short-range inhibition and high-gain recurrent habituative excitation between cells that obey membrane equations. Habituation, or depression, of synapses controls reset of cell activations both through enhanced ON responses and OFF antagonistic rebounds. Orientation and ocular dominance maps form when high-gain medium-range recurrent excitation and long-range inhibition interact with the short-range mechanisms. The resulting structure clarifies how simple and complex cells contribute to perceptual processes such as texture segregation and perceptual grouping.Air Force Office of Scientific Research (F49620-92-J-0334); British Petroleum (BP 89A-1204); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409

    On the Origin of the Functional Architecture of the Cortex

    Get PDF
    The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex

    Establishment of a Scaffold for Orientation Maps in Primary Visual Cortex of Higher Mammals

    Full text link

    Development and encoding of visual statistics in the primary visual cortex

    Get PDF
    How do circuits in the mammalian cerebral cortex encode properties of the sensory environment in a way that can drive adaptive behavior? This question is fundamental to neuroscience, but it has been very difficult to approach directly. Various computational and theoretical models can explain a wide range of phenomena observed in the primary visual cortex (V1), including the anatomical organization of its circuits, the development of functional properties like orientation tuning, and behavioral effects like surround modulation. However, so far no model has been able to bridge these levels of description to explain how the machinery that develops directly affects behavior. Bridging these levels is important, because phenomena at any one specific level can have many possible explanations, but there are far fewer possibilities to consider once all of the available evidence is taken into account. In this thesis we integrate the information gleaned about cortical development, circuit and cell-type specific interactions, and anatomical, behavioral and electrophysiological measurements, to develop a computational model of V1 that is constrained enough to make predictions across multiple levels of description. Through a series of models incorporating increasing levels of biophysical detail and becoming increasingly better constrained, we are able to make detailed predictions for the types of mechanistic interactions required for robust development of cortical maps that have a realistic anatomical organization, and thereby gain insight into the computations performed by the primary visual cortex. The initial models focus on how existing anatomical and electrophysiological knowledge can be integrated into previously abstract models to give a well-grounded and highly constrained account of the emergence of pattern-specific tuning in the primary visual cortex. More detailed models then address the interactions between specific excitatory and inhibitory cell classes in V1, and what role each cell type may play during development and function. Finally, we demonstrate how these cell classes come together to form a circuit that gives rise not only to robust development but also the development of realistic lateral connectivity patterns. Crucially, these patterns reflect the statistics of the visual environment to which the model was exposed during development. This property allows us to explore how the model is able to capture higher-order information about the environment and use that information to optimize neural coding and aid the processing of complex visual tasks. Using this model we can make a number of very specific predictions about the mechanistic workings of the brain. Specifically, the model predicts a crucial role of parvalbumin-expressing interneurons in robust development and divisive normalization, while it implicates somatostatin immunoreactive neurons in mediating longer range and feature-selective suppression. The model also makes predictions about the role of these cell classes in efficient neural coding and under what conditions the model fails to organize. In particular, we show that a tight coupling of activity between the principal excitatory population and the parvalbumin population is central to robust and stable responses and organization, which may have implications for a variety of diseases where parvalbumin interneuron function is impaired, such as schizophrenia and autism. Further the model explains the switch from facilitatory to suppressive surround modulation effects as a simple by-product of the facilitating response function of long-range excitatory connections targeting a specialized class of inhibitory interneurons. Finally, the model allows us to make predictions about the statistics that are encoded in the extensive network of long-range intra-areal connectivity in V1, suggesting that even V1 can capture high-level statistical dependencies in the visual environment. The final model represents a comprehensive and well constrained model of the primary visual cortex, which for the first time can relate the physiological properties of individual cell classes to their role in development, learning and function. While the model is specifically tuned for V1, all mechanisms introduced are completely general, and can be used as a general cortical model, useful for studying phenomena across the visual cortex and even the cortex as a whole. This work is also highly relevant for clinical neuroscience, as the cell types studied here have been implicated in neurological disorders as wide ranging as autism, schizophrenia and Parkinson’s disease

    A functional model for primary visual cortex

    Get PDF
    Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. This thesis describes a model that accounts for many of the empirical observations concerning direction selectivity. The model comprises a single column of cat primary visual cortex and a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small interval (~4 ms), and it is this difference that confers direction selectivity on model neurons. I show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex

    A functional model for primary visual cortex

    Get PDF
    Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. This thesis describes a model that accounts for many of the empirical observations concerning direction selectivity. The model comprises a single column of cat primary visual cortex and a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small interval (~4 ms), and it is this difference that confers direction selectivity on model neurons. I show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex
    • …
    corecore