246 research outputs found

    Hierarchical eyelid and face tracking

    Get PDF
    Most applications on Human Computer Interaction (HCI) require to extract the movements of user faces, while avoiding high memory and time expenses. Moreover, HCI systems usually use low-cost cameras, while current face tracking techniques strongly depend on the image resolution. In this paper, we tackle the problem of eyelid tracking by using Appearance-Based Models, thus achieving accurate estimations of the movements of the eyelids, while avoiding cues, which require high-resolution faces, such as edge detectors or colour information. Consequently, we can track the fast and spontaneous movements of the eyelids, a very hard task due to the small resolution of the eye regions. Subsequently, we combine the results of eyelid tracking with the estimations of other facial features, such as the eyebrows and the lips. As a result, a hierarchical tracking framework is obtained: we demonstrate that combining two appearance-based trackers allows to get accurate estimates for the eyelid, eyebrows, lips and also the 3D head pose by using low-cost video cameras and in real-time. Therefore, our approach is shown suitable to be used for further facial-expression analysis.Peer Reviewe

    Improved facial feature fitting for model based coding and animation

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Spatio-Temporal Reasoning for Reliable Facial Expression Interpretation

    Get PDF
    Understanding human behaviours and emotions has received contributions from image analysis and pattern recognition techniques in order to tackle this challenge. The most popular facial expression classifiers deal with eyebrows and lips while avoiding eyelid motion. According to psychologists, eye motion is relevant for trust and deceit analysis as well for dichotomizing near facial expressions. Unlike previous approaches, we include the eyelid motion by constructing an appearance-based tracker (ABT). Subsequently, a Case-Based Reasoning (CBR) approach is applied by training a case-base with seven facial actions. We classify new facial expressions with respect to previous solutions, previously assessing confidence for the proposed solutions. Therefore, the proposed system yields efficient classification rates comparable to the best previous facial expression classifiers. The ABT and CBR combination provides trusty solutions by evaluating the confidence of the solution quality for eyebrows, mouth and eyes. Consequently, this method is robust and accurate for facial motion coding, and for confident classifications. The training is progressive, the quality of the solution increases with respect to previous solutions and do not need re-training processes

    THREE DIMENSIONAL MODELING AND ANIMATION OF FACIAL EXPRESSIONS

    Get PDF
    Facial expression and animation are important aspects of the 3D environment featuring human characters. These animations are frequently used in many kinds of applications and there have been many efforts to increase the realism. Three aspects are still stimulating active research: the detailed subtle facial expressions, the process of rigging a face, and the transfer of an expression from one person to another. This dissertation focuses on the above three aspects. A system for freely designing and creating detailed, dynamic, and animated facial expressions is developed. The presented pattern functions produce detailed and animated facial expressions. The system produces realistic results with fast performance, and allows users to directly manipulate it and see immediate results. Two unique methods for generating real-time, vivid, and animated tears have been developed and implemented. One method is for generating a teardrop that continually changes its shape as the tear drips down the face. The other is for generating a shedding tear, which is a kind of tear that seamlessly connects with the skin as it flows along the surface of the face, but remains an individual object. The methods both broaden CG and increase the realism of facial expressions. A new method to automatically set the bones on facial/head models to speed up the rigging process of a human face is also developed. To accomplish this, vertices that describe the face/head as well as relationships between each part of the face/head are grouped. The average distance between pairs of vertices is used to place the head bones. To set the bones in the face with multi-density, the mean value of the vertices in a group is measured. The time saved with this method is significant. A novel method to produce realistic expressions and animations by transferring an existing expression to a new facial model is developed. The approach is to transform the source model into the target model, which then has the same topology as the source model. The displacement vectors are calculated. Each vertex in the source model is mapped to the target model. The spatial relationships of each mapped vertex are constrained

    Design And Development Of A Social Robotic Head - Dorothy

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    Timing is everything: A spatio-temporal approach to the analysis of facial actions

    No full text
    This thesis presents a fully automatic facial expression analysis system based on the Facial Action Coding System (FACS). FACS is the best known and the most commonly used system to describe facial activity in terms of facial muscle actions (i.e., action units, AUs). We will present our research on the analysis of the morphological, spatio-temporal and behavioural aspects of facial expressions. In contrast with most other researchers in the field who use appearance based techniques, we use a geometric feature based approach. We will argue that that approach is more suitable for analysing facial expression temporal dynamics. Our system is capable of explicitly exploring the temporal aspects of facial expressions from an input colour video in terms of their onset (start), apex (peak) and offset (end). The fully automatic system presented here detects 20 facial points in the first frame and tracks them throughout the video. From the tracked points we compute geometry-based features which serve as the input to the remainder of our systems. The AU activation detection system uses GentleBoost feature selection and a Support Vector Machine (SVM) classifier to find which AUs were present in an expression. Temporal dynamics of active AUs are recognised by a hybrid GentleBoost-SVM-Hidden Markov model classifier. The system is capable of analysing 23 out of 27 existing AUs with high accuracy. The main contributions of the work presented in this thesis are the following: we have created a method for fully automatic AU analysis with state-of-the-art recognition results. We have proposed for the first time a method for recognition of the four temporal phases of an AU. We have build the largest comprehensive database of facial expressions to date. We also present for the first time in the literature two studies for automatic distinction between posed and spontaneous expressions

    Eye and mouth openness estimation in sign language and news broadcast videos

    Get PDF
    Currently there exists an increasing need of automatic video analysis tools to support sign language studies and the evaluation of the activity of the face in sign language and other videos. Henceforth, research focusing on automatic estimation and annotation of videos and facial gestures is continuously developing. In this work, techniques for the estimation of eye and mouth openness and eyebrow position are studied. Such estimation could prove beneficial for automatic annotation and quantitative evaluation of sign language videos as well as towards more prolific production of sign language material. The method proposed for the estimation of the eyebrow position, eye openness, and mouth state is based on the construction of a set of facial landmarks that employ different detection techniques designed for each facial element. Furthermore, we compare the presented landmark detection algorithm with a recently published third-party face alignment algorithm. The landmarks are used to compute features which describe the geometric information of the elements of the face. The features constitute the input for the classifiers that can produce quantized openness estimates for the studied facial elements. Finally, the estimation performance of the estimations is evaluated in quantitative and qualitative experiments with sign language and news broadcast videos

    A system for recognizing human emotions based on speech analysis and facial feature extraction: applications to Human-Robot Interaction

    Get PDF
    With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people based on the growing understanding of psychological processes. Accumulating evidences in Human Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication between human and robot for creating a social perception, cognition, desired interaction and sensation. Furthermore, robots need to receive human emotion and optimize their behavior to help and interact with a human being in various environments. The most natural way to recognize basic emotions is extracting sets of features from human speech, facial expression and body gesture. A system for recognition of emotions based on speech analysis and facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory (behavior) and robotic science context. In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, fear and disgust). Also, we propose a methodology and a software program for classification of emotions based on speech analysis and facial features extraction. The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) have been evaluated and the results have been compared with intensity and speech rate. The facial feature extraction phase uses the mathematical formulation (B\ue9zier curves) and the geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, the new data have been merged with reference data in order to recognize the basic emotion. Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order to design a hybrid technique for emotion recognition. Such technique have been implemented in a software program, which can be employed in Human-Robot Interaction. The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten Asian (Middle East) adult and (iii) Ten adult American. Eventually, the proposed technique made possible to recognize the basic emotion in most of the cases
    corecore