323 research outputs found

    TESTING A COMBINED MULTISPECTRAL-MULTITEMPORAL APPROACH FOR GETTING CLOUDLESS IMAGERY FOR SENTINEL-2

    Get PDF
    Abstract. Earth observation and land cover monitoring are among major applications for satellite data. However, the use of primary satellite information is often limited by clouds, cloud shadows, and haze, which generally contaminate optical imagery. For purposes of hazard assessment, for instance, such as flooding, drought, or seismic events, the availability of uncontaminated optical data is required. Different approaches exist for masking and replacing cloud/haze related contamination. However, most common algorithms take advantage by employing thermal data. Hence, we tested an algorithm suitable for optical imagery only. The approach combines a multispectral-multitemporal strategy to retrieve daytime cloudless and shadow-free imagery. While the approach has been explored for Landsat information, namely Landsat 5 TM and Landsat 8 OLI, here we aim at testing the suitability of the method for Sentinel-2 Multi-Spectral Instrument. A multitemporal stack, for the same image scene, is employed to retrieve a composite uncontaminated image over a temporal period of few months. Besides, in order to emphasize the effectiveness of optical imagery for monitoring post-disaster events, two temporal stages have been processed, before and after a critical seismic event occurred in Lombok Island, Indonesia, in summer 2018. The approach relies on a clouds and cloud shadows masking algorithm, based on spectral features, and a data reconstruction phase based on automatic selection of the most suitable pixels from a multitemporal stack. Results have been tested with uncontaminated image samples for the same scene. High accuracy is achieved

    Haze compensation and atmospheric correction for Sentinel-2 data

    Get PDF
    Sentinel-2 data bring the opportunity to analyze landcover at a high spatial accuracy together with a wide swath. Nevertheless, the high data volume requires a per granule analysis. This may lead to border effect (difference in the radiance/reflectance value) between the neighboring granules during atmospheric correction. If there is a high variation of the aerosol optical thickness (AOT) across the granules, especially in case of haze, the atmospherically corrected mosaicked products often show granule border effects. To overcome this artifact a dehazing prior the atmospheric correction is performed. The dehazing compensates only for the haze thickness keeping the AOT fraction for further estimation and compensation in the atmospheric correction chain. This approach results in a smoother AOT map estimate and a corresponding bottom of atmosphere (BOA) reflectance with no border artifact. Digital elevation model (DEM) is employed allowing a better labeling of haze and a higher accuracy of the dehazing. The DEM analysis rejects high elevation areas where bright surfaces might erroneously be classified as haze, thus reducing the probability of misclassification. An example of a numeric evaluation of the atmospheric correction products (AOT and BOA reflectance) is given. It demonstrates a smooth transition between the granules in the AOT map leading to the proper estimate of the BOA reflectance data. The dehazing and atmospheric correction are implemented in the DLR's ATCOR software

    Cloud removal from optical remote sensing images

    Full text link
    Optical remote sensing images used for Earth surface observations are constantly contaminated by cloud cover. Clouds dynamically affect the applications of optical data and increase the difficulty of image analysis. Therefore, cloud is considered as one of the sources of noise in optical image data, and its detection and removal need to be operated as a pre-processing step in most remote sensing image processing applications. This thesis investigates the current cloud detection and removal algorithms and develops three new cloud removal methods to improve the accuracy of the results. A thin cloud removal method based on signal transmission principles and spectral mixture analysis (ST-SMA) for pixel correction is developed in the first contribution. This method considers not only the additive reflectance from the clouds but also the energy absorption when solar radiation passes through them. Data correction is achieved by subtracting the product of the cloud endmember signature and the cloud abundance and rescaling according to the cloud thickness. The proposed method has no requirement for meteorological data and does not rely on reference images. The experimental results indicate that the proposed approach is able to perform effective removal of thin clouds in different scenarios. In the second study, an effective cloud removal method is proposed by taking advantage of the noise-adjusted principal components transform (CR-NAPCT). It is found that the signal-to-noise ratio (S/N) of cloud data is higher than data without cloud contamination, when spatial correlation is considered and are shown in the first NAPCT component (NAPC1) in the NAPCT data. An inverse transformation with a modified first component is then applied to generate the cloud free image. The effectiveness of the proposed method is assessed by performing experiments on simulated and real data to compare the quantitative and qualitative performance of the proposed approach. The third study of this thesis deals with both cloud and cloud shadow problems with the aid of an auxiliary image in a clear sky condition. A new cloud removal approach called multitemporal dictionary learning (MDL) is proposed. Dictionaries of the cloudy areas (target data) and the cloud free areas (reference data) are learned separately in the spectral domain. An online dictionary learning method is then applied to obtain the two dictionaries in this method. The removal process is conducted by using the coefficients from the reference image and the dictionary learned from the target image. This method is able to recover the data contaminated by thin and thick clouds or cloud shadows. The experimental results show that the MDL method is effective from both quantitative and qualitative viewpoints

    Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture

    Get PDF
    Remote sensing multispectral images are extensively used by applications in various fields. The degradation generated by haze or smoke negatively influences the visual analysis of the represented scene. In this paper, a deep neural network based method is proposed to address the visualization improvement of hazy and smoky images. The method is able to entirely exploit the information contained by all spectral bands, especially by the SWIR bands, which are usually not contaminated by haze or smoke. A dimensionality reduction of the spectral signatures or angular signatures is rapidly obtained by using a stacked autoencoders (SAE) trained based on contaminated images only. The latent characteristics obtained by the encoder are mapped to the R - G - B channels for visualization. The haze and smoke removal results of several Sentinel 2 scenes present an increased contrast and show the haze hidden areas from the initial natural color images

    The state-of-the-art progress in cloud detection, identification, and tracking approaches: a systematic review

    Get PDF
    A cloud is a mass of water vapor floating in the atmosphere. It is visible from the ground and can remain at a variable height for some time. Clouds are very important because their interaction with the rest of the atmosphere has a decisive influence on weather, for instance by sunlight occlusion or by bringing rain. Weather denotes atmosphere behavior and is determinant in several human activities, such as agriculture or energy capture. Therefore, cloud detection is an important process about which several methods have been investigated and published in the literature. The aim of this paper is to review some of such proposals and the papers that have been analyzed and discussed can be, in general, classified into three types. The first one is devoted to the analysis and explanation of clouds and their types, and about existing imaging systems. Regarding cloud detection, dealt with in a second part, diverse methods have been analyzed, i.e., those based on the analysis of satellite images and those based on the analysis of images from cameras located on Earth. The last part is devoted to cloud forecast and tracking. Cloud detection from both systems rely on thresholding techniques and a few machine-learning algorithms. To compute the cloud motion vectors for cloud tracking, correlation-based methods are commonly used. A few machine-learning methods are also available in the literature for cloud tracking, and have been discussed in this paper too

    NEW AUTOMATED CLOUD AND CLOUD-SHADOW DETECTION USING LANDSAT IMAGERY

    Get PDF
    Cloud cover has become a major problem in the use of optical satellite imageries, particularly in Indonesian region located along equator or tropical region with high cloud cover almost all year round. In this study, a new method for cloud and cloud shadow detection using Landsat imagery for specific Indonesian region was developed to provide a more efficient and effective way to detect clouds and cloud shadows. Landsat Top of Atmosphere (TOA) reflectance and Brightness Temperature (BT) were used as inputs into the model. The first step was to detect cloud based on cloud physical properties using albedo and thermal bands, the second step was to detect cloud shadows using the Near Infrared (NIR), and Short Wave Infrared (SWIR) bands, and finally, the geometric relationships were used to match the cloud and cloud shadow layer, before proceeding to the production of the final cloud and cloud shadow mask. The results were then compared with other method such as tree base cloud separation. It showed that method we proposed could provide better result than tree base method, the accuracy result of this method was 98.75%

    Atmospheric effects on land classification using satellites and their correction.

    Get PDF
    Haze occurs almost every year in Malaysia and is caused by smoke which originates from forest fire in Indonesia. It causes visibility to drop, therefore affecting the data acquired for this area using optical sensor such as that on board Landsat - the remote sensing satellite that have provided the longest continuous record of Earth's surface. The work presented in this thesis is meant to develop a better understanding of atmospheric effects on land classification using satellite data and method of removing them. To do so, the two main atmospheric effects dealt with here are cloud and haze. Detection of cloud and its shadow are carried out using MODIS algorithms due to allowing optimal use of its rich bands. The analysis is applied to Landsat data, in which shows a high agreement with other methods. The thesis then concerns on determining the most suitable classification scheme to be used. Maximum Likelihood (ML) is found to be a preferable classification scheme due to its simplicity, objectivity and ability to classify land covers with acceptable accuracy. The effects of haze are subsequently modelled and simulated as a summation of a weighted signal component and a weighted pure haze component. By doing so, the spectral and statistical properties of the land classes can be systematically investigated, in which showing that haze modifies the class spectral signatures, consequently causing the classification accuracy to decline. Based on the haze model, a method of removing haze from satellite data was developed and tested using both simulated and real datasets. The results show that the removal method is able clean up haze and improve classification accuracy, yet a highly non-uniform haze may hamper its performance

    Mapeamento de óxidos de ferro usando imagens landsat-8/OLI e EO-1/hyperion nos depósitos ferríferos da Serra Norte, província mineral de Carajás, Brasil

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas463331349FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informação307177/2014-9Métodos de mapeamento para óxidos de ferro e argilas, aplicados em imagens Landsat-8/Operational Land Imager (OLI) e Earth Observing 1 (EO-1)/Hyperion e integrados com dados aerogeofísicos, foram testados nos depósitos de ferro de N4, N5 e N4WS, Serra Norte, Carajás, Brasil. Razões de banda foram aplicadas à imagem Landsat-8/OLI, identificando os principais minerais dos depósitos de ferro de N4 e N5. As imagens Landsat-8/OLI mostraram um bom desempenho para a exploração de óxido de ferro, mesmo em áreas vegetadas. Extração de feições espectrais e o método de classificação hiperespectral Spectral Angle Mapper foram aplicados na imagem EO-1/Hyperion com bons resultados para o mapeamento de minério de ferro de alto teor, bem como da proporção de hematita-goethita do minério e de argilas nos regolitos. A imagem EO-1/Hyperion provou ser uma excelente ferramenta para o mapeamento remoto de minerais em áreas de mina a céu aberto, bem como no mapeamento das pilhas de minério. Uma classificação não supervisionada foi aplicada a dados de 74 bandas do visível e infravermelho próximo do EO-1/Hyperion, índice Normalized Difference Vegetation Index derivado do Landsat-8/OLI, Modelo Digital do Terreno derivado do Laser Imaging Detection and Ranging, e dados aerogeofísicos (gamaespectrometria e componente Tzz do dado gravimétrico gradiométrico). Essa classificação de dados multifonte mostrou ser uma alternativa para mapeamento de óxidos de ferro em áreas vegetadas, bem como da geologia do regolito e das áreas mineralizada
    corecore