137 research outputs found

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    An overview of touchless 2D fingerprint recognition

    Get PDF
    Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work

    Handbook of Vascular Biometrics

    Get PDF

    Finger Vein Recognition Using Principle Component Analysis and Adaptive k-Nearest Centroid Neighbor Classifier

    Get PDF
    The k-nearest centroid neighbor kNCN classifier is one of the non-parametric classifiers which provide a powerful decision based on the geometrical surrounding neighborhood. Essentially, the main challenge in the kNCN is due to slow classification time that utilizing all training samples to find each nearest centroid neighbor. In this work, an adaptive k-nearest centroid neighbor (akNCN) is proposed as an improvement to the kNCN classifier. Two new rules are introduced to adaptively select the neighborhood size of the test sample. The neighborhood size for the test sample is changed through the following ways: 1) The neighborhood size, k will be adapted to j if the centroid distance of j-th nearest centroid neighbor is greater than the predefined boundary. 2) There is no need to look for further nearest centroid neighbors if the maximum number of samples of the same class is found among jth nearest centroid neighbor. Thus, the size of neighborhood is adaptively changed to j. Experimental results on theFinger Vein USM (FV-USM) image database demonstrate the promising results in which the classification time of the akNCN classifier is significantly reduced to 51.56% in comparison to the closest competitors, kNCN and limited-kNCN. It also outperforms its competitors by achieving the best reduction ratio of 12.92% whilemaintaining the classification accuracy

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Wrist vascular biometric recognition using a portable contactless system

    Get PDF
    Human wrist vein biometric recognition is one of the least used vascular biometric modalities. Nevertheless, it has similar usability and is as safe as the two most common vascular variants in the commercial and research worlds: hand palm vein and finger vein modalities. Besides, the wrist vein variant, with wider veins, provides a clearer and better visualization and definition of the unique vein patterns. In this paper, a novel vein wrist non-contact system has been designed, implemented, and tested. For this purpose, a new contactless database has been collected with the software algorithm TGS-CVBRÂź. The database, called UC3M-CV1, consists of 1200 near-infrared contactless images of 100 different users, collected in two separate sessions, from the wrists of 50 subjects (25 females and 25 males). Environmental light conditions for the different subjects and sessions have been not controlled: different daytimes and different places (outdoor/indoor). The software algorithm created for the recognition task is PIS-CVBRÂź. The results obtained by combining these three elements, TGS-CVBRÂź, PIS-CVBRÂź, and UC3M-CV1 dataset, are compared using two other different wrist contact databases, PUT and UC3M (best value of Equal Error Rate (EER) = 0.08%), taken into account and measured the computing time, demonstrating the viability of obtaining a contactless real-time-processing wrist system.Publicad

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    PROTECT: pervasive and useR fOcused biomeTrics bordEr projeCT. A Case Study

    Get PDF
    PROTECT: Pervasive and useR fOcused biomeTrics bordEr projeCT is an EU project funded by the Horizon 2020 research and Innovation Programme. The main aim of PROTECT was to build an advanced biometric-based person identification system that works robustly across a range of border crossing types and that has strong user-centric features. This work presents the case study of the multibiometric verification system developed within PROTECT. The system has been developed to be suitable for different borders such as air, sea, and land borders. The system covers two use cases: the walk-through scenario, in which the traveller is on foot; the drive-through scenario, in which the traveller is in a vehicle. Each deployment includes a different set of biometric traits and this paper illustrates how to evaluate such multibiometric system in accordance with international standards and, in particular, how to overcome practical problems that may be encountered when dealing with multibiometric evaluation, such as different score distributions and missing scores
    • 

    corecore