80 research outputs found

    Macroautophagy and Chaperone-Mediated Autophagy in Heart Failure: The Known and the Unknown

    Get PDF
    Cardiac diseases including hypertrophic and ischemic cardiomyopathies are increasingly being reported to accumulate misfolded proteins and damaged organelles. These findings have led to an increasing interest in protein degradation pathways, like autophagy, which are essential not only for normal protein turnover but also in the removal of misfolded and damaged proteins. Emerging evidence suggests a previously unprecedented role for autophagic processes in cardiac physiology and pathology. This review focuses on the major types of autophagic processes, the genes and protein complexes involved, and their regulation. It discusses the key similarities and differences between macroautophagy, chaperone-mediated autophagy, and selective mitophagy structures and functions. The genetic models available to study loss and gain of macroautophagy, mitophagy, and CMA are discussed. It defines the markers of autophagic processes, methods for measuring autophagic activities, and their interpretations. This review then summarizes the major studies of autophagy in the heart and their contribution to cardiac pathology. Some reports suggest macroautophagy imparts cardioprotection from heart failure pathology. Meanwhile, other studies find macroautophagy activation may be detrimental in cardiac pathology. An improved understanding of autophagic processes and their regulation may lead to a new genre of treatments for cardiac diseases

    Role of mitochondria in liver diseases

    Get PDF
    252 p.La disfunción mitocondrial desempeña un papel clave en el inicio y desarrollo de las enfermedades hepáticas crónicas. La proteína J controlada por metilación (MCJ) es un inhibidor endógeno de laactividad mitocondrial, y previamente hemos podido demostrar niveles significativamente aumentados deMCJ en pacientes con hígado graso, daño hepático inducido por paracetamol y lesión hepática debido a la colestasis, lo que sugiere una posible asociación entre MCJ y la disfunción mitocondrial. La enfermedad hepática alcohólica causa más de 2 millones de fallecimientos en el mundo y es la segunda causa detrasplante hepático. Sin embargo, carece de un tratamiento específico. Por otro lado, las tasas actuales de trasplante hepático cubren menos del 10% de las necesidades globales, y entre las estrategias paraaumentar el grupo de donantes, se ha propuesto el uso de hígado con criterio expandido, aquellos queprovienen de hígados añosos o esteatóticos. Sin embargo, el uso de estos órganos aumenta el fallo hepático post trasplante, ya que su capacidad regenerativa está limitada y sufren una alta susceptibilidad hacia el daño por isquemia. En ambos modelos la disfunción mitocondrial es un indicador temprano deldaño hepático y hemos podido comprobar la sobreexpresión de MCJ en estadios avanzados. De hecho, elsilenciamiento hepático de MCJ (1) recupera la actividad mitocondrial, alivia la esteatosis y evita la inflamación y el estrés oxidativo en modelos preclínicos de enfermedad hepática alcohólica, y (2) acelerala regeneración hepática y reduce la lesión isquémica en ratones jóvenes, pero significativamente,también en ratones añosos y esteatóticos, promoviendo su uso para el trasplante hepático, reduciendo así la escasez existente de donantes. En resumen, este proyecto muestra la contribución de la disfunción mitocondrial, en especial de la proteína MCJ, en el desarrollo de la enfermedad hepática alcohólica y la regeneración limitada junto con mayor susceptibilidad isquémica que se observa en hígados con un metabolismo comprometido, con el objetivo de establecer dicha proteína como futura diana terapéutica para el tratamiento de enfermedades hepáticas crónica

    Characterization of microvascular stress and cell death responses triggered by renal ischemia-reperfusion injury and their roles in progressive fibrosis

    Full text link
    L’insuffisance rénale aiguë (IRA) est une complication clinique associée à une mortalité significative. Parmi les diverses causes d'IRA, l'ischémie-reperfusion (IRI) est une étiologie importante, en particulier dans le contexte de la transplantation rénale. Les types de mort cellulaire programmée (MCP) activées dans l'IRA induite par IRI ont été étudiées par des nombreux groupes. L’atteinte tubulaire épithéliale est classiquement considérée comme le principal contributeur à l'IRA.En effet, plusieurs morts programmées de cellules tubulaires ont été démontrées dans la littérature. Cependant, les lésions endothéliales microvasculaires rénales attirent davantage l'attention en tant qu'inducteurs cruciaux de dysfonctionnement microvasculaire et de fibrose rénale progressive. Ainsi, certaines équipes de recherche, dont la nôtre a rapporté le développement de l'apoptose endothéliale rénale en association avec l’IRI. Le but de mon travail était donc de caractériser les types de mort cellulaire microvasculaires secondaires à l’IRI et leur contribution à la dysfonction rénale. Pour évaluer l'importance de l'apoptose dans l'IRA induite par IRI, nous avons utilisé un modèle murin d’IRI chez des souris caspase-3 knock-out (KO) et sauvages, avec clampage de l'artère rénale pendant 30 minutes (modèle IRA légère) ou 60 minutes (modèle IRA sévère). Dans le modèle IRA légère, notre résultat montre que la carence en caspase-3 empêche la mort apoptotique des cellules endothéliales dans toutes les phases de l'IRA, atténuant la raréfaction microvasculaire, le dépôt de collagène et la fibrose rénale. L’absence de caspase-3 favorise aussi le maintien d’une perméabilité endothéliale microvasculaire normale à long terme. Toutefois, l’invalidation de la caspase-3 aggrave la mort cellulaire tubulaire à court terme en favorisant la nécroptose, mais améliore l’homéostasie tubulaire à long terme grâce à la préservation des capillaires péritubulaires (PTCs) permettant un maintien de la perfusion tubulaire. En outre, le déficit en caspase-3 est également associé à un effet protecteur contre la raréfaction microvasculaire rénale, la fibrose rénale progressive, ainsi qu'une perméabilité endothéliale améliorée et une préservation de la fonction rénale dans le modèle d’IRA sévère. En conclusion, nos résultats démontrent l'effet crucial de l’apoptose endothéliale microvasculaire en tant qu'inducteur de dysfonctionnement microvasculaire rénal, de raréfaction microvasculaire et de fibrose rénale progressive dans la physiopathologie de l'IRA légère et sévère induite par l'IRI. Ils établissent aussi l’importance prédominante de l’atteinte microvasculaire plutôt que tubulaire épithéliale dans la prédiction de la perte de fonction rénale à long terme suite à une IRI.Acute kidney injury (AKI) is a crucial clinical event, with increasing incidence and mortality. Among various pathogenesis of AKI, ischemia-reperfusion injury (IRI) is an important etiology, especially in the renal post-transplant scenario. The complex of programmed cell deaths (PCD) developed in IRI-induced AKI has been proven in a number of investigations. Renal tubular epithelial injury has been considered as the major contributor in AKI and multiple programmed tubular epithelial cell (TECs) deaths have been demonstrated in the literature. However, renal microvascular endothelial injury is attracting more attention as an important inducer of microvascular dysfunction and renal progressive fibrosis. Some investigators, including our team, have reported the development of renal endothelial apoptosis in the condition of ischemia. Apoptosis, a commonly known programmed cell death, has been elucidated in both renal TECs and microvascular endothelial cells (ECs) post-IRI and the activation of caspase-3 functions as the key effector of caspase-dependent apoptosis. To verify the importance of apoptosis in IRI- induced AKI, we applied the in vivo murine renal IRI model in wild-type and caspase-3 KO mice, with clamping the renal artery for 30 minutes (mild AKI model) or 60 minutes (severe AKI model). In regard to the mild AKI model, our result demonstrates that caspase-3 deficiency prevents ECs apoptotic death in all phases of AKI, attenuating microvascular rarefaction, collagen deposition, and renal fibrosis, while maintaining physical endothelial permeability in the long-term. Meanwhile, caspase-3 deletion aggravates tubular injury in the short-term by promoting TECs necroptosis but ameliorates long-term tubular injury through preserved peritubular capillaries (PTCs) function. Furthermore, caspase-3 deficiency also demonstrated a protective effect against renal microvascular rarefaction, progressive renal fibrosis, as well as enhanced endothelial permeability in the severe AKI model. Conclusively, our findings determine the crucial effect of microvascular endothelial apoptosis as an inducer of renal microvascular dysfunction, microvascular rarefaction, and progressive renal fibrosis in the pathophysiology of mild and severe AKI induced by IRI. Additionally, our results demonstrate the predominant importance of microvascular endothelial injury over tubular epithelial injury in predicting renal function loss at long-term post-IRI

    Regulation of microglia polarization after cerebral ischemia

    Get PDF
    Stroke ranks second as a leading cause of death and permanent disability globally. Microglia, innate immune cells in the brain, respond rapidly to ischemic injury, triggering a robust and persistent neuroinflammatory reaction throughout the disease’s progression. Neuroinflammation plays a critical role in the mechanism of secondary injury in ischemic stroke and is a significant controllable factor. Microglia activation takes on two general phenotypes: the pro-inflammatory M1 type and the anti-inflammatory M2 type, although the reality is more complex. The regulation of microglia phenotype is crucial to controlling the neuroinflammatory response. This review summarized the key molecules and mechanisms of microglia polarization, function, and phenotypic transformation following cerebral ischemia, with a focus on the influence of autophagy on microglia polarization. The goal is to provide a reference for the development of new targets for the treatment for ischemic stroke treatment based on the regulation of microglia polarization

    Muscle Stem Cells Regulate the Bioenergetic Function of Myofibers in Mitochondrial Myopathies

    Get PDF
    Skeletal muscle tissue exhibits a high degree of plasticity due to their muscle stem cells, which are indispensable for muscle fiber repair, and the unique architecture of their mitochondria, which provide the energy for muscle fiber function, maintenance, and regeneration. In response to injury, quiescent muscle stem cells (MuSCs) undergo myogenesis to activate, differentiate, and fuse into the muscle fiber as new myonuclei that regulate myofiber repair. To meet the high energy demands of muscle regeneration, MuSCs increase in mitochondrial content through the various phases of myogenesis. However, when muscle mitochondria become dysfunctional, such as in peripheral artery disease (PAD) and Duchenne muscular dystrophy (DMD), MuSCs are debilitated and myofiber mitochondria remain defective, resulting in mitochondrial myopathy. Despite the characterization of mitochondrial dysfunction in these two disease models, the relationship between MuSC mitochondria and the bioenergetic function of the myofiber has not been investigated. To address this, the overarching objective of this thesis was to explore the role of MuSCs in remodeling the mitochondrial network and function of the myofiber in mitochondrial myopathies. We first correlated the MuSC response with the stages of mitochondrial network remodeling following a murine hindlimb ischemia (HLI) model of PAD and discovered that MuSC-derived myonuclei drive mitochondrial biogenesis. As direct evidence of MuSC-mediated remodeling of mitochondria, we then revealed that mitochondrial dysfunction in the MuSC yields deficient bioenergetic function of the dystrophic myofiber, which can be rescued by transplantation of MuSCs with healthy mitochondria. We tested this further in ischemic muscle after aging, which exacerbated the mitochondrial dysfunction, and again observed significant improvements in bioenergetic function following transplantation of healthy MuSCs. Overall, this thesis established that MuSC mitochondria play a consequential role on myofiber bioenergetic function, identified a source of mitochondrial dysfunction in dystrophic muscle, developed a model of age-associated PAD, and provided a conceptual framework for MuSC transplantation as a therapeutic approach for mitochondrial myopathies.Ph.D

    Deciphering Non-coding RNAs in Cardiovascular Health and Disease

    Get PDF
    After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach

    Phosphoregulation on mitochondria: Integration of cell and organelle responses

    Get PDF
    Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c‐Jun N‐terminal kinase (JNK), protein kinase A (PKA), PTEN‐induced kinase‐1 (PINK1), and AMP‐dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria‐cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen‐activated protein kinase phosphatase‐1 (MKP‐1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A‐kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5—SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson\u27s disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein‐protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD
    corecore