1,753 research outputs found

    Graph based Anomaly Detection and Description: A Survey

    Get PDF
    Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured graph data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised vs. (semi-)supervised approaches, for static vs. dynamic graphs, for attributed vs. plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly attribution and highlight the major techniques that facilitate digging out the root cause, or the ‘why’, of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field

    Unsupervised Coupled Metric Similarity for Non-IID Categorical Data

    Full text link
    © 1989-2012 IEEE. Appropriate similarity measures always play a critical role in data analytics, learning, and processing. Measuring the intrinsic similarity of categorical data for unsupervised learning has not been substantially addressed, and even less effort has been made for the similarity analysis of categorical data that is not independent and identically distributed (non-IID). In this work, a Coupled Metric Similarity (CMS) is defined for unsupervised learning which flexibly captures the value-to-attribute-to-object heterogeneous coupling relationships. CMS learns the similarities in terms of intrinsic heterogeneous intra-and inter-attribute couplings and attribute-to-object couplings in categorical data. The CMS validity is guaranteed by satisfying metric properties and conditions, and CMS can flexibly adapt to IID to non-IID data. CMS is incorporated into spectral clustering and k-modes clustering and compared with relevant state-of-the-art similarity measures that are not necessarily metrics. The experimental results and theoretical analysis show the CMS effectiveness of capturing independent and coupled data characteristics, which significantly outperforms other similarity measures on most datasets

    Concept coupling learning for improving concept lattice-based document retrieval

    Full text link
    © 2017 Elsevier Ltd The semantic information in any document collection is critical for query understanding in information retrieval. Existing concept lattice-based retrieval systems mainly rely on the partial order relation of formal concepts to index documents. However, the methods used by these systems often ignore the explicit semantic information between the formal concepts extracted from the collection. In this paper, a concept coupling relationship analysis model is proposed to learn and aggregate the intra- and inter-concept coupling relationships. The intra-concept coupling relationship employs the common terms of formal concepts to describe the explicit semantics of formal concepts. The inter-concept coupling relationship adopts the partial order relation of formal concepts to capture the implicit dependency of formal concepts. Based on the concept coupling relationship analysis model, we propose a concept lattice-based retrieval framework. This framework represents user queries and documents in a concept space based on fuzzy formal concept analysis, utilizes a concept lattice as a semantic index to organize documents, and ranks documents with respect to the learned concept coupling relationships. Experiments are performed on the text collections acquired from the SMART information retrieval system. Compared with classic concept lattice-based retrieval methods, our proposed method achieves at least 9%, 8% and 15% improvement in terms of average MAP, IAP@11 and P@10 respectively on all the collections

    Machine learning for the sustainable energy transition: a data-driven perspective along the value chain from manufacturing to energy conversion

    Get PDF
    According to the special report Global Warming of 1.5 °C of the IPCC, climate action is not only necessary but more than ever urgent. The world is witnessing rising sea levels, heat waves, events of flooding, droughts, and desertification resulting in the loss of lives and damage to livelihoods, especially in countries of the Global South. To mitigate climate change and commit to the Paris agreement, it is of the uttermost importance to reduce greenhouse gas emissions coming from the most emitting sector, namely the energy sector. To this end, large-scale penetration of renewable energy systems into the energy market is crucial for the energy transition toward a sustainable future by replacing fossil fuels and improving access to energy with socio-economic benefits. With the advent of Industry 4.0, Internet of Things technologies have been increasingly applied to the energy sector introducing the concept of smart grid or, more in general, Internet of Energy. These paradigms are steering the energy sector towards more efficient, reliable, flexible, resilient, safe, and sustainable solutions with huge environmental and social potential benefits. To realize these concepts, new information technologies are required, and among the most promising possibilities are Artificial Intelligence and Machine Learning which in many countries have already revolutionized the energy industry. This thesis presents different Machine Learning algorithms and methods for the implementation of new strategies to make renewable energy systems more efficient and reliable. It presents various learning algorithms, highlighting their advantages and limits, and evaluating their application for different tasks in the energy context. In addition, different techniques are presented for the preprocessing and cleaning of time series, nowadays collected by sensor networks mounted on every renewable energy system. With the possibility to install large numbers of sensors that collect vast amounts of time series, it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate the curse of dimensionality, thus improving the interpretability of predictive models, speeding up their learning process, and enhancing their generalization properties. Therefore, this thesis discussed the importance of dimensionality reduction in sensor networks mounted on renewable energy systems and, to this end, presents two novel unsupervised algorithms. The first approach maps time series in the network domain through visibility graphs and uses a community detection algorithm to identify clusters of similar time series and select representative parameters. This method can group both homogeneous and heterogeneous physical parameters, even when related to different functional areas of a system. The second approach proposes the Combined Predictive Power Score, a method for feature selection with a multivariate formulation that explores multiple sub-sets of expanding variables and identifies the combination of features with the highest predictive power over specified target variables. This method proposes a selection algorithm for the optimal combination of variables that converges to the smallest set of predictors with the highest predictive power. Once the combination of variables is identified, the most relevant parameters in a sensor network can be selected to perform dimensionality reduction. Data-driven methods open the possibility to support strategic decision-making, resulting in a reduction of Operation & Maintenance costs, machine faults, repair stops, and spare parts inventory size. Therefore, this thesis presents two approaches in the context of predictive maintenance to improve the lifetime and efficiency of the equipment, based on anomaly detection algorithms. The first approach proposes an anomaly detection model based on Principal Component Analysis that is robust to false alarms, can isolate anomalous conditions, and can anticipate equipment failures. The second approach has at its core a neural architecture, namely a Graph Convolutional Autoencoder, which models the sensor network as a dynamical functional graph by simultaneously considering the information content of individual sensor measurements (graph node features) and the nonlinear correlations existing between all pairs of sensors (graph edges). The proposed neural architecture can capture hidden anomalies even when the turbine continues to deliver the power requested by the grid and can anticipate equipment failures. Since the model is unsupervised and completely data-driven, this approach can be applied to any wind turbine equipped with a SCADA system. When it comes to renewable energies, the unschedulable uncertainty due to their intermittent nature represents an obstacle to the reliability and stability of energy grids, especially when dealing with large-scale integration. Nevertheless, these challenges can be alleviated if the natural sources or the power output of renewable energy systems can be forecasted accurately, allowing power system operators to plan optimal power management strategies to balance the dispatch between intermittent power generations and the load demand. To this end, this thesis proposes a multi-modal spatio-temporal neural network for multi-horizon wind power forecasting. In particular, the model combines high-resolution Numerical Weather Prediction forecast maps with turbine-level SCADA data and explores how meteorological variables on different spatial scales together with the turbines' internal operating conditions impact wind power forecasts. The world is undergoing a third energy transition with the main goal to tackle global climate change through decarbonization of the energy supply and consumption patterns. This is not only possible thanks to global cooperation and agreements between parties, power generation systems advancements, and Internet of Things and Artificial Intelligence technologies but also necessary to prevent the severe and irreversible consequences of climate change that are threatening life on the planet as we know it. This thesis is intended as a reference for researchers that want to contribute to the sustainable energy transition and are approaching the field of Artificial Intelligence in the context of renewable energy systems

    Hybrid Models with Deep and Invertible Features

    Full text link
    We propose a neural hybrid model consisting of a linear model defined on a set of features computed by a deep, invertible transformation (i.e. a normalizing flow). An attractive property of our model is that both p(features), the density of the features, and p(targets | features), the predictive distribution, can be computed exactly in a single feed-forward pass. We show that our hybrid model, despite the invertibility constraints, achieves similar accuracy to purely predictive models. Moreover the generative component remains a good model of the input features despite the hybrid optimization objective. This offers additional capabilities such as detection of out-of-distribution inputs and enabling semi-supervised learning. The availability of the exact joint density p(targets, features) also allows us to compute many quantities readily, making our hybrid model a useful building block for downstream applications of probabilistic deep learning.Comment: ICML 201

    CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS

    Get PDF
    The book collects the short papers presented at the 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Statistics, Computer Science and Applications of the University of Florence, under the auspices of the Italian Statistical Society and the International Federation of Classification Societies (IFCS). CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-based classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research

    EEG connectivity in infants at risk for autism spectrum disorder

    Get PDF
    Autism Spectrum Disorder (ASD) is characterized by social and communication difficulties, and restricted and repetitive behaviours, and is typically diagnosed during toddlerhood. Electroencephalographic (EEG) connectivity during infancy may predict later diagnostic outcome, and dimensional traits, although results vary with differences in methods. The aim of this thesis is to examine how infant EEG connectivity relates to familial risk, and later categorical and dimensional outcomes of ASD. A previous study found alpha band hyperconnectivity in 14-month-old infants who developed ASD compared to infants who did not develop ASD at 36 months. Chapter 3 shows that methods used in this previous study indeed provide reliable results. Chapter 4 describes the replication study using identical methods to the previous study. Although the difference between groups was not replicated, the association between alpha connectivity and restricted and repetitive behaviours during toddlerhood was replicated. Chapter 5 tested the hypothesis that social and communication difficulties relate to theta connectivity in response to social and non-social stimuli. Theta connectivity was increased during social compared to non-social stimuli. Network topologies differed between groups with high and low familial risk, but not between categorical outcome groups. Theta connectivity was not associated with dimensional traits at toddlerhood. Chapter 6 showed that graph organisation was not related to familial risk, or diagnostic or dimensional outcomes at toddlerhood. Finally, Chapter 7 combined measures from previous chapters and examined how these relate to dimensional outcomes at childhood. Graph organisation at infancy showed a stronger association with dimensional outcomes at childhood than other connectivity measures. Overall, the results in this thesis illustrate the variability in developmental trajectories in ASD, while emphasizing the complexity of the disorder and use of a dimensional approach to ASD. Chapter 8 further discusses contributions and implications for research of EEG connectivity as early predictive marker for ASD
    • …
    corecore