8,631 research outputs found

    Learning text representation using recurrent convolutional neural network with highway layers

    Get PDF
    Recently, the rapid development of word embedding and neural networks has brought new inspiration to various NLP and IR tasks. In this paper, we describe a staged hybrid model combining Recurrent Convolutional Neural Networks (RCNN) with highway layers. The highway network module is incorporated in the middle takes the output of the bi-directional Recurrent Neural Network (Bi-RNN) module in the first stage and provides the Convolutional Neural Network (CNN) module in the last stage with the input. The experiment shows that our model outperforms common neural network models (CNN, RNN, Bi-RNN) on a sentiment analysis task. Besides, the analysis of how sequence length influences the RCNN with highway layers shows that our model could learn good representation for the long text.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieva

    Learning Convolutional Text Representations for Visual Question Answering

    Full text link
    Visual question answering is a recently proposed artificial intelligence task that requires a deep understanding of both images and texts. In deep learning, images are typically modeled through convolutional neural networks, and texts are typically modeled through recurrent neural networks. While the requirement for modeling images is similar to traditional computer vision tasks, such as object recognition and image classification, visual question answering raises a different need for textual representation as compared to other natural language processing tasks. In this work, we perform a detailed analysis on natural language questions in visual question answering. Based on the analysis, we propose to rely on convolutional neural networks for learning textual representations. By exploring the various properties of convolutional neural networks specialized for text data, such as width and depth, we present our "CNN Inception + Gate" model. We show that our model improves question representations and thus the overall accuracy of visual question answering models. We also show that the text representation requirement in visual question answering is more complicated and comprehensive than that in conventional natural language processing tasks, making it a better task to evaluate textual representation methods. Shallow models like fastText, which can obtain comparable results with deep learning models in tasks like text classification, are not suitable in visual question answering.Comment: Conference paper at SDM 2018. https://github.com/divelab/sva
    • …
    corecore