183 research outputs found

    Natural realizations of sparsity matroids

    Get PDF
    A hypergraph G with n vertices and m hyperedges with d endpoints each is (k,l)-sparse if for all sub-hypergraphs G' on n' vertices and m' edges, m'\le kn'-l. For integers k and l satisfying 0\le l\le dk-1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k,l)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G.Comment: Corrected some typos from the previous version; to appear in Ars Mathematica Contemporane

    Body-and-cad geometric constraint systems

    Get PDF
    AbstractMotivated by constraint-based CAD software, we develop the foundation for the rigidity theory of a very general model: the body-and-cad structure, composed of rigid bodies in 3D constrained by pairwise coincidence, angular and distance constraints. We identify 21 relevant geometric constraints and develop the corresponding infinitesimal rigidity theory for these structures. The classical body-and-bar rigidity model can be viewed as a body-and-cad structure that uses only one constraint from this new class.As a consequence, we identify a new, necessary, but not sufficient, counting condition for minimal rigidity of body-and-cad structures: nested sparsity. This is a slight generalization of the well-known sparsity condition of Maxwell

    On tree decomposability of Henneberg graphs

    Get PDF
    In this work we describe an algorithm that generates well constrained geometric constraint graphs which are solvable by the tree-decomposition constructive technique. The algorithm is based on Henneberg constructions and would be of help in transforming underconstrained problems into well constrained problems as well as in exploring alternative constructions over a given set of geometric elements.Postprint (published version

    Geometry of Point-Hyperplane and Spherical Frameworks

    Get PDF
    In this thesis we show that the infinitesimal rigidity of point-hyperplane frameworks in Euclidean spaces is equivalent to the infinitesimal rigidity of bar-joint frameworks in spherical spaces with a set of joints (corresponding to the hyperplanes) located on a hyperplane. This is done by comparing the rigidity matrix of Euclidean point-hyperplane frameworks and the rigidity matrix of spherical frameworks. This result clearly shows how the first-order rigidity in projective spaces and Euclidean spaces are globally connected. This geometrically significant result is central to the thesis. This result leads to the equivalence of the first-order rigidity of point-hyperplane frameworks with that of bar-joint frameworks with a set of joints in a hyperplane in a Euclidean space (joint work). We also study the rigidity of point-hyperplane frameworks and characterize their rigidity in Euclidean spaces. We next highlight the relationship between point-line frameworks and slider mechanisms in the plane. Point-line frameworks are used to model various types of slider mechanisms. A combinatorial characterization of the rigidity of pinned-slider frameworks in the plane is derived directly as an immediate consequence of the analogous result for pinned bar-joint frameworks in the plane. Using fixed-normal point-line frameworks, we model a second type of slider system in which the slider directions do not change. Also, a third type of slider mechanism is introduced in which the sliders may only rotate around a fixed point but do not translate. This slider mechanism is defined using point-line frameworks with rotatory lines (no translational motion of the lines is allowed). A combinatorial characterization of the generic rigidity of these frameworks is coauthored in a joint work. Then we introduce point-hyperplane tensegrity frameworks in Euclidean spaces. We investigate the rigidity and the infinitesimal rigidity of these frameworks using tensegrity frameworks in spherical spaces. We characterize these different types of rigidity for point-hyperplane tensegrity frameworks and show how these types of rigidity are linked together. This leads to a characterization of the rigidity of a broader class of slider mechanisms in which sliders may move under variable distance constraints rather than fixed-distance constraints. Finally we investigate body-cad constraints in the plane. A combinatorial characterization of their generic infinitesimal rigidity is given. We show how angular constraints are related to non-angular constraints. This leads to a combinatorial result about the rigidity of a specific class of body-bar frameworks with point-point coincidence constraints in the space
    • …
    corecore