15,543 research outputs found

    Cross-Layer Optimization of Fast Video Delivery in Cache-Enabled Relaying Networks

    Full text link
    This paper investigates the cross-layer optimization of fast video delivery and caching for minimization of the overall video delivery time in a two-hop relaying network. The half-duplex relay nodes are equipped with both a cache and a buffer which facilitate joint scheduling of fetching and delivery to exploit the channel diversity for improving the overall delivery performance. The fast delivery control is formulated as a two-stage functional non-convex optimization problem. By exploiting the underlying convex and quasi-convex structures, the problem can be solved exactly and efficiently by the developed algorithm. Simulation results show that significant caching and buffering gains can be achieved with the proposed framework, which translates into a reduction of the overall video delivery time. Besides, a trade-off between caching and buffering gains is unveiled.Comment: 7 pages, 4 figures; accepted for presentation at IEEE Globecom, San Diego, CA, Dec. 201

    Topological transition in disordered planar matching: combinatorial arcs expansion

    Full text link
    In this paper, we investigate analytically the properties of the disordered Bernoulli model of planar matching. This model is characterized by a topological phase transition, yielding complete planar matching solutions only above a critical density threshold. We develop a combinatorial procedure of arcs expansion that explicitly takes into account the contribution of short arcs, and allows to obtain an accurate analytical estimation of the critical value by reducing the global constrained problem to a set of local ones. As an application to a toy representation of the RNA secondary structures, we suggest generalized models that incorporate a one-to-one correspondence between the contact matrix and the RNA-type sequence, thus giving sense to the notion of effective non-integer alphabets.Comment: 28 pages, 6 figures, published versio

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization
    • …
    corecore