1,052 research outputs found

    Fuzzy modelling using a simplified rule base

    Get PDF
    Transparency and complexity are two major concerns of fuzzy rule-based systems. To improve accuracy and precision of the outputs, we need to increase the partitioning of the input space. However, this increases the number of rules exponentially, thereby increasing the complexity of the system and decreasing its transparency. The main factor behind these two issues is the conjunctive canonical form of the fuzzy rules. We present a novel method for replacing these rules with their singleton forms, and using aggregation operators to provide the mechanism for combining the crisp outputs

    Genetic algorithm design of neural network and fuzzy logic controllers

    Get PDF
    Genetic algorithm design of neural network and fuzzy logic controller

    Formal presentation of fuzzy systems with multiple sensor inputs

    Get PDF
    The paper addresses the problems of complexity in fuzzy rule based systems with multiple sensor inputs. The number of fuzzy rules in this case is an exponential function of the number of inputs. Some of the existing methods for rule base reductions are reviewed and their drawbacks summarized. As an alternative, a novel methodology for complexity management in fuzzy systems is presented which is based on formal presentation techniques such as integer tables. A Matlab example is shown illustrating the presentation of a fuzzy rule base with an integer table. Finally, some future research directions are outlined within the framework of the proposed methodology

    Distributivity of strong implications over conjunctive and disjunctive uninorms

    Get PDF
    summary:This paper deals with implications defined from disjunctive uninorms UU by the expression I(x,y)=U(N(x),y)I(x,y)=U(N(x),y) where NN is a strong negation. The main goal is to solve the functional equation derived from the distributivity condition of these implications over conjunctive and disjunctive uninorms. Special cases are considered when the conjunctive and disjunctive uninorm are a tt-norm or a tt-conorm respectively. The obtained results show a lot of new solutions generalyzing those obtained in previous works when the implications are derived from tt-conorms

    PERFORMANCE EVALUATION AND REVIEW FRAMEWORK OF ROBOTIC MISSIONS (PERFORM): AUTONOMOUS PATH PLANNING AND AUTONOMY PERFORMANCE EVALUATION

    Get PDF
    The scope of this work spans two main areas of autonomy research 1) autonomous path planning and 2) test and evaluation of autonomous systems. Path planning is an integral part of autonomous decision-making, and a deep understanding in this area provides valuable perspective on approaching the problem of how to effectively evaluate vehicle behavior. Autonomous decision-making capabilities must include reliability, robustness, and trustworthiness in a real-world environment. A major component of robot decision-making lies in intelligent path-planning. Serving as the brains of an autonomous system, an efficient and reliable path planner is crucial to mission success and overall safety. A hybrid global and local planner is implemented using a combination of the Potential Field Method (PFM) and A-star (A*) algorithms. Created using a layered vector field strategy, this allows for flexibility along with the ability to add and remove layers to take into account other parameters such as currents, wind, dynamics, and the International Regulations for Preventing Collisions at Sea (COLGREGS). Different weights can be attributed to each layer based on the determined level of importance in a hierarchical manner. Different obstacle scenarios are shown in simulation, and proof-of-concept validation of the path-planning algorithms on an actual ASV is accomplished in an indoor environment. Results show that the combination of PFM and A* complement each other to generate a successfully planned path to goal that alleviates local minima and entrapment issues. Additionally, the planner demonstrates the ability to update for new obstacles in real time using an obstacle detection sensor. Regarding test and evaluation of autonomous vehicles, trust and confidence in autonomous behavior is required to send autonomous vehicles into operational missions. The author introduces the Performance Evaluation and Review Framework Of Robotic Missions (PERFORM), a framework for which to enable a rigorous and replicable autonomy test environment, thereby filling the void between that of merely simulating autonomy and that of completing true field missions. A generic architecture for defining the missions under test is proposed and a unique Interval Type-2 Fuzzy Logic approach is used as the foundation for the mathematically rigorous autonomy evaluation framework. The test environment is designed to aid in (1) new technology development (i.e. providing direct comparisons and quantitative evaluations of varying autonomy algorithms), (2) the validation of the performance of specific autonomous platforms, and (3) the selection of the appropriate robotic platform(s) for a given mission type (e.g. for surveying, surveillance, search and rescue). Several case studies are presented to apply the metric to various test scenarios. Results demonstrate the flexibility of the technique with the ability to tailor tests to the user’s design requirements accounting for different priorities related to acceptable risks and goals of a given mission

    Adaptive Resonance Theory

    Full text link
    SyNAPSE program of the Defense Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, an NSF Science of Learning Center (SBE-0354378
    • …
    corecore