111 research outputs found

    Energy Efficient Two-hop D2D Communications Underlay 5G Networks: A Stackelberg Game Approach

    Get PDF
    Although coverage and capacity are the key elements of the 5G user experience, a dominant part of the population living in rural areas still experience inferior connectivity. Several solutions have been proposed to address this issue. They include deploying small cells, increasing the number of sectors per eNodeB, and reusing signal repetition. However, most of them require complex deployment and expensive fees. Accordingly, many efforts have been deployed on coverage extension software. Even so, many critical issues related to public safety, relay capacity, and devices power constraints are still challenging. As a contribution, we propose in this paper a spectral and energy-efficient two-hop device to device (D2D) relay selection algorithm. Our main goal is to extend the connectivity to the out-of-coverage (OOC) devices. Contrarily to previous solutions in which the relay is selected centrally or individually, we propose a distributed two-stage algorithm based on the Stackelberg game to involve all the competing devices. In the first stage, the OOC devices (OCDUs) are matched with the relays maximizing their spectral efficiency, and the required bandwidth for each one is determined. Then, a power control stage is investigated to calculate the optimal transmission power. The numerical and simulation analysis shows that the proposed schema outperforms the former solutions in total system capacity, spectral efficiency (SE), and energy efficiency (EE) while reducing the complexity

    Dual-battery empowered green cellular networks

    Get PDF
    With awareness of the potential harmful effects to the environment and climate change, on-grid brown energy consumption of information and communications technology (ICT) has drawn much attention. Cellular base stations (BSs) are among the major energy guzzlers in ICT, and their contributions to the global carbon emissions increase sustainedly. It is essential to leverage green energy to power BSs to reduce their on-grid brown energy consumption. However, in order to furthest save on-grid brown energy and decrease the on-grid brown energy electricity expenses, most existing green energy related works only pursue to maximize the green energy utilization while compromising the services received by the mobile users. In reality, dissatisfaction of services may eventually lead to loss of market shares and profits of the network providers. In this research, a dual-battery enabled profit driven user association scheme is introduced to jointly consider the traffic delivery latency and green energy utilization to maximize the profits for the network providers in heterogeneous cellular networks. Since this profit driven user association optimization problem is NP-hard, some heuristics are presented to solve the problem with low computational complexity. Finally, the performance of the proposed algorithm is validated through extensive simulations. In addition, the Internet of Things (IoT) heralds a vision of future Internet where all physical things/devices are connected via a network to promote a heightened level of awareness about our world and dramatically improve our daily lives. Nonetheless, most wireless technologies utilizing unlicensed bands cannot provision ubiquitous and quality IoT services. In contrast, cellular networks support large-scale, quality of service guaranteed, and secured communications. However, tremendous proximal communications via local BSs will lead to severe traffic congestion and huge energy consumption in conventional cellular networks. Device-to-device (D2D) communications can potentially offload traffic from and reduce energy consumption of BSs. In order to realize the vision of a truly global IoT, a novel architecture, i.e., overlay-based green relay assisted D2D communications with dual batteries in heterogeneous cellular networks, is introduced. By optimally allocating the network resource, the introduced resource allocation method provisions the IoT services and minimizes the overall energy consumption of the pico relay BSs. By balancing the residual green energy among the pico relay BSs, the green energy utilization is maximized; this furthest saves the on-grid energy. Finally, the performance of the proposed architecture is validated through extensive simulations. Furthermore, the mobile devices serve the important roles in cellular networks and IoT. With the ongoing worldwide development of IoT, an unprecedented number of edge devices imperatively consume a substantial amount of energy. The overall IoT mobile edge devices have been predicted to be the leading energy guzzler in ICT by 2020. Therefore, a three-step green IoT architecture is proposed, i.e., ambient energy harvesting, green energy wireless transfer and green energy balancing, in this research. The latter step reinforces the former one to ensure the availability of green energy. The basic design principles for these three steps are laid out and discussed. In summary, based on the dual-battery architecture, this dissertation research proposes solutions for the three aspects, i.e., green cellular BSs, green D2D communications and green devices, to hopefully and eventually actualize green cellular access networks, as part of the ongoing efforts in greening our society and environment
    corecore