8,778 research outputs found

    Convex Integer Optimization by Constantly Many Linear Counterparts

    Full text link
    In this article we study convex integer maximization problems with composite objective functions of the form f(Wx)f(Wx), where ff is a convex function on Rd\R^d and WW is a d×nd\times n matrix with small or binary entries, over finite sets S⊂ZnS\subset \Z^n of integer points presented by an oracle or by linear inequalities. Continuing the line of research advanced by Uri Rothblum and his colleagues on edge-directions, we introduce here the notion of {\em edge complexity} of SS, and use it to establish polynomial and constant upper bounds on the number of vertices of the projection \conv(WS) and on the number of linear optimization counterparts needed to solve the above convex problem. Two typical consequences are the following. First, for any dd, there is a constant m(d)m(d) such that the maximum number of vertices of the projection of any matroid S⊂{0,1}nS\subset\{0,1\}^n by any binary d×nd\times n matrix WW is m(d)m(d) regardless of nn and SS; and the convex matroid problem reduces to m(d)m(d) greedily solvable linear counterparts. In particular, m(2)=8m(2)=8. Second, for any d,l,md,l,m, there is a constant t(d;l,m)t(d;l,m) such that the maximum number of vertices of the projection of any three-index l×m×nl\times m\times n transportation polytope for any nn by any binary d×(l×m×n)d\times(l\times m\times n) matrix WW is t(d;l,m)t(d;l,m); and the convex three-index transportation problem reduces to t(d;l,m)t(d;l,m) linear counterparts solvable in polynomial time

    A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs

    Full text link
    In this paper we generalize N-fold integer programs and two-stage integer programs with N scenarios to N-fold 4-block decomposable integer programs. We show that for fixed blocks but variable N, these integer programs are polynomial-time solvable for any linear objective. Moreover, we present a polynomial-time computable optimality certificate for the case of fixed blocks, variable N and any convex separable objective function. We conclude with two sample applications, stochastic integer programs with second-order dominance constraints and stochastic integer multi-commodity flows, which (for fixed blocks) can be solved in polynomial time in the number of scenarios and commodities and in the binary encoding length of the input data. In the proof of our main theorem we combine several non-trivial constructions from the theory of Graver bases. We are confident that our approach paves the way for further extensions

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    N-fold integer programming in cubic time

    Full text link
    N-fold integer programming is a fundamental problem with a variety of natural applications in operations research and statistics. Moreover, it is universal and provides a new, variable-dimension, parametrization of all of integer programming. The fastest algorithm for nn-fold integer programming predating the present article runs in time O(ng(A)L)O(n^{g(A)}L) with LL the binary length of the numerical part of the input and g(A)g(A) the so-called Graver complexity of the bimatrix AA defining the system. In this article we provide a drastic improvement and establish an algorithm which runs in time O(n3L)O(n^3 L) having cubic dependency on nn regardless of the bimatrix AA. Our algorithm can be extended to separable convex piecewise affine objectives as well, and also to systems defined by bimatrices with variable entries. Moreover, it can be used to define a hierarchy of approximations for any integer programming problem
    • …
    corecore