4,670 research outputs found

    What grid cells convey about rat location

    Get PDF
    We characterize the relationship between the simultaneously recorded quantities of rodent grid cell firing and the position of the rat. The formalization reveals various properties of grid cell activity when considered as a neural code for representing and updating estimates of the rat's location. We show that, although the spatially periodic response of grid cells appears wasteful, the code is fully combinatorial in capacity. The resulting range for unambiguous position representation is vastly greater than the ≈1–10 m periods of individual lattices, allowing for unique high-resolution position specification over the behavioral foraging ranges of rats, with excess capacity that could be used for error correction. Next, we show that the merits of the grid cell code for position representation extend well beyond capacity and include arithmetic properties that facilitate position updating. We conclude by considering the numerous implications, for downstream readouts and experimental tests, of the properties of the grid cell code

    The Past, Present, and Future of Multidimensional Scaling

    Get PDF
    Multidimensional scaling (MDS) has established itself as a standard tool for statisticians and applied researchers. Its success is due to its simple and easily interpretable representation of potentially complex structural data. These data are typically embedded into a 2-dimensional map, where the objects of interest (items, attributes, stimuli, respondents, etc.) correspond to points such that those that are near to each other are empirically similar, and those that are far apart are different. In this paper, we pay tribute to several important developers of MDS and give a subjective overview of milestones in MDS developments. We also discuss the present situation of MDS and give a brief outlook on its future

    Simplification and Shift in Cognition of Political Difference: Applying the Geometric Modeling to the Analysis of Semantic Similarity Judgment

    Get PDF
    Perceiving differences by means of spatial analogies is intrinsic to human cognition. Multi-dimensional scaling (MDS) analysis based on Minkowski geometry has been used primarily on data on sensory similarity judgments, leaving judgments on abstractive differences unanalyzed. Indeed, analysts have failed to find appropriate experimental or real-life data in this regard. Our MDS analysis used survey data on political scientists' judgments of the similarities and differences between political positions expressed in terms of distance. Both distance smoothing and majorization techniques were applied to a three-way dataset of similarity judgments provided by at least seven experts on at least five parties' positions on at least seven policies (i.e., originally yielding 245 dimensions) to substantially reduce the risk of local minima. The analysis found two dimensions, which were sufficient for mapping differences, and fit the city-block dimensions better than the Euclidean metric in all datasets obtained from 13 countries. Most city-block dimensions were highly correlated with the simplified criterion (i.e., the left–right ideology) for differences that are actually used in real politics. The isometry of the city-block and dominance metrics in two-dimensional space carries further implications. More specifically, individuals may pay attention to two dimensions (if represented in the city-block metric) or focus on a single dimension (if represented in the dominance metric) when judging differences between the same objects. Switching between metrics may be expected to occur during cognitive processing as frequently as the apparent discontinuities and shifts in human attention that may underlie changing judgments in real situations occur. Consequently, the result has extended strong support for the validity of the geometric models to represent an important social cognition, i.e., the one of political differences, which is deeply rooted in human nature

    Space is the machine, part three: the laws of the field

    Get PDF
    Part III of the book, ‘The Laws of the Field’, uses these noted regularities to reconsider the most fundamental question of all in architectural theory: how is the vast field of possible spatial complexes constrained to create those that are actually found as buildings? First, in Chapter Eight, ‘Is architecture an ars combinatoria?’, a general theory of ‘partitioning’ is proposed, in which it is shown that local physical changes in a spatial system always have more or less global configurational effects. It is the laws governing this passage form local physical moves to global spatial effects that are the spatial laws that underlie building. These local-to-global spatial laws are linked to the evolution of real buildings through what will be called ‘generic function’, by which is meant the spatial implications of the most fundamental aspects of human use of space, that is, the fact of occupation and the fact of movement. At this generic level, function imposes restraints on what is spatially viable, and this is responsible for what all buildings have in common as spatial designs. Generic function is the ‘first filter’ between the field of possibility and architectural actuality. The second filter is then the cultural or programmatic requirement of that type of building. The third filter is the idiosyncrasies of structure and expression that then distinguish that building from all others. The passage from the possible to the real passes through these three filters, and without an understanding of each we cannot decipher the form-function relation. Most of all, without a knowledge of generic function and its spatial implications we cannot understand that what all buildings have in common in their spatial structures is already profoundly influenced by human functioning in space. In Chapter 9, ‘The fundamental city’, the theory of generic function and the three filters is applied to cities to show how much of the growth of settlements is governed by these basic laws. A new computer modelling technique of ‘all line analysis’, which begins by conceptualising vacant space as an infinitely dense matrix of lines, containing all possible structures, is used to show how the observable regularities in urban forms from the most local to the most global can be seen to be products of the same underlying processes. A fundamental settlement process is proposed, of which particular cultural types are parameterisations. Finally, it is shown how the fundamental settlement process is essentially realised through a small number of spatial ideas which have an essentially geometrical nature

    Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes

    Get PDF
    Skeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers. We profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes. The muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation. We provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions

    Learning from Multi-View Multi-Way Data via Structural Factorization Machines

    Full text link
    Real-world relations among entities can often be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item's attributes, the user's profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities and provide complementary information. In this paper, we introduce a multi-tensor-based approach that can preserve the underlying structure of multi-view data in a generic predictive model. Specifically, we propose structural factorization machines (SFMs) that learn the common latent spaces shared by multi-view tensors and automatically adjust the importance of each view in the predictive model. Furthermore, the complexity of SFMs is linear in the number of parameters, which make SFMs suitable to large-scale problems. Extensive experiments on real-world datasets demonstrate that the proposed SFMs outperform several state-of-the-art methods in terms of prediction accuracy and computational cost.Comment: 10 page
    corecore