253 research outputs found

    Enumeration of PLCP-orientations of the 4-cube

    Full text link
    The linear complementarity problem (LCP) provides a unified approach to many problems such as linear programs, convex quadratic programs, and bimatrix games. The general LCP is known to be NP-hard, but there are some promising results that suggest the possibility that the LCP with a P-matrix (PLCP) may be polynomial-time solvable. However, no polynomial-time algorithm for the PLCP has been found yet and the computational complexity of the PLCP remains open. Simple principal pivoting (SPP) algorithms, also known as Bard-type algorithms, are candidates for polynomial-time algorithms for the PLCP. In 1978, Stickney and Watson interpreted SPP algorithms as a family of algorithms that seek the sink of unique-sink orientations of nn-cubes. They performed the enumeration of the arising orientations of the 33-cube, hereafter called PLCP-orientations. In this paper, we present the enumeration of PLCP-orientations of the 44-cube.The enumeration is done via construction of oriented matroids generalizing P-matrices and realizability classification of oriented matroids.Some insights obtained in the computational experiments are presented as well

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    On the number of simple arrangements of five double pseudolines

    Get PDF
    We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.Comment: 24 pages, 16 figures, 6 table

    Computing the Face Lattice of a Polytope from its Vertex-Facet Incidences

    Get PDF
    We give an algorithm that constructs the Hasse diagram of the face lattice of a convex polytope P from its vertex-facet incidences in time O(min{n,m}*a*f), where n is the number of vertices, m is the number of facets, a is the number of vertex-facet incidences, and f is the total number of faces of P. This improves results of Fukuda and Rosta (1994), who described an algorithm for enumerating all faces of a d-polytope in O(min{n,m}*d*f^2) steps. For simple or simplicial d-polytopes our algorithm can be specialized to run in time O(d*a*f). Furthermore, applications of the algorithm to other atomic lattices are discussed, e.g., to face lattices of oriented matroids.Comment: 14 pages; to appear in: Comput. Geom.; the new version contains some minor extensions and corrections as well as a more detailed treatment of oriented matroid
    corecore