285 research outputs found

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    Connector algebras for C/E and P/T nets interactions

    Get PDF
    A quite fourishing research thread in the recent literature on component based system is concerned with the algebraic properties of different classes of connectors. In a recent paper, an algebra of stateless connectors was presented that consists of five kinds of basic connectors, namely symmetry, synchronization, mutual exclusion, hiding and inaction, plus their duals and it was shown how they can be freely composed in series and in parallel to model sophisticated "glues". In this paper we explore the expressiveness of stateful connectors obtained by adding one-place buffers or unbounded buffers to the stateless connectors. The main results are: i) we show how different classes of connectors exactly correspond to suitable classes of Petri nets equipped with compositional interfaces, called nets with boundaries; ii) we show that the difference between strong and weak semantics in stateful connectors is reflected in the semantics of nets with boundaries by moving from the classic step semantics (strong case) to a novel banking semantics (weak case), where a step can be executed by taking some "debit" tokens to be given back during the same step; iii) we show that the corresponding bisimilarities are congruences (w.r.t. composition of connectors in series and in parallel); iv) we show that suitable monoidality laws, like those arising when representing stateful connectors in the tile model, can nicely capture concurrency aspects; and v) as a side result, we provide a basic algebra, with a finite set of symbols, out of which we can compose all P/T nets, fulfilling a long standing quest

    Tropical Geometry: new directions

    Get PDF
    The workshop "Tropical Geometry: New Directions" was devoted to a wide discussion and exchange of ideas between the leading experts representing various points of view on the subject, notably, to new phenomena that have opened themselves in the course of the last 4 years. This includes, in particular, refined enumerative geometry (using positive integer q-numbers instead of positive integer numbers), unexpected appearance of tropical curves in scaling limits of Abelian sandpile models, as well as a significant progress in more traditional areas of tropical research, such as tropical moduli spaces, tropical homology and tropical correspondence theorems

    Acta Scientiarum Mathematicarum : Tomus 41. Fasc. 1-2.

    Get PDF

    Acta Cybernetica : Volume 17. Number 4.

    Get PDF

    How to write a coequation

    Get PDF
    There is a large amount of literature on the topic of covarieties, coequations and coequational specifications, dating back to the early seventies. Nevertheless, coequations have not (yet) emerged as an everyday practical specification formalism for computer scientists. In this review paper, we argue that this is partly due to the multitude of syntaxes for writing down coequations, which seems to have led to some confusion about what coequations are and what they are for. By surveying the literature, we identify four types of syntaxes: coequations-as-corelations, coequations-as-predicates, coequations-as-equations, and coequations-as-modal-formulas. We present each of these in a tutorial fashion, relate them to each other, and discuss their respective uses
    • …
    corecore