150 research outputs found

    Combinatorial and Asymptotical Results on the Neighborhood Grid

    Full text link
    In 2009, Joselli et al introduced the Neighborhood Grid data structure for fast computation of neighborhood estimates in point clouds. Even though the data structure has been used in several applications and shown to be practically relevant, it is theoretically not yet well understood. The purpose of this paper is to present a polynomial-time algorithm to build the data structure. Furthermore, it is investigated whether the presented algorithm is optimal. This investigations leads to several combinatorial questions for which partial results are given. Finally, we present several limits and experiments regarding the quality of the obtained neighborhood relation.Comment: 33 pages, 18 Figure

    A Fibonacci control system with application to hyper-redundant manipulators

    Get PDF
    We study a robot snake model based on a discrete linear control system involving Fibonacci sequence and closely related to the theory of expansions in non-integer bases. The present paper includes an investigation of the reachable workspace, a more general analysis of the control system underlying the model, its reachability and local controllability properties and the relation with expansions in non-integer bases and with iterated function systems

    (Almost) tight bounds for randomized and quantum Local Search on hypercubes and grids

    Full text link
    The Local Search problem, which finds a local minimum of a black-box function on a given graph, is of both practical and theoretical importance to many areas in computer science and natural sciences. In this paper, we show that for the Boolean hypercube \B^n, the randomized query complexity of Local Search is Θ(2n/2n1/2)\Theta(2^{n/2}n^{1/2}) and the quantum query complexity is Θ(2n/3n1/6)\Theta(2^{n/3}n^{1/6}). We also show that for the constant dimensional grid [N1/d]d[N^{1/d}]^d, the randomized query complexity is Θ(N1/2)\Theta(N^{1/2}) for d4d \geq 4 and the quantum query complexity is Θ(N1/3)\Theta(N^{1/3}) for d6d \geq 6. New lower bounds for lower dimensional grids are also given. These improve the previous results by Aaronson [STOC'04], and Santha and Szegedy [STOC'04]. Finally we show for [N1/2]2[N^{1/2}]^2 a new upper bound of O(N1/4(loglogN)3/2)O(N^{1/4}(\log\log N)^{3/2}) on the quantum query complexity, which implies that Local Search on grids exhibits different properties at low dimensions.Comment: 18 pages, 1 figure. v2: introduction rewritten, references added. v3: a line for grant added. v4: upper bound section rewritte

    Hidden Gibbs random fields model selection using Block Likelihood Information Criterion

    Full text link
    Performing model selection between Gibbs random fields is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluztion is a doubly intractable problem. This forms a central issue to pick the model that best fits an observed data. We introduce a new approximate version of the Bayesian Information Criterion. We partition the lattice into continuous rectangular blocks and we approximate the probability measure of the hidden Gibbs field by the product of some Gibbs distributions over the blocks. On that basis, we estimate the likelihood and derive the Block Likelihood Information Criterion (BLIC) that answers model choice questions such as the selection of the dependency structure or the number of latent states. We study the performances of BLIC for those questions. In addition, we present a comparison with ABC algorithms to point out that the novel criterion offers a better trade-off between time efficiency and reliable results

    Covering Points by Disjoint Boxes with Outliers

    Get PDF
    For a set of n points in the plane, we consider the axis--aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise-disjoint boxes that together contain n-k points. In this paper, we consider the boxes to be either squares or rectangles, and we want to minimize the area of the largest box. For general p we show that the problem is NP-hard for both squares and rectangles. For a small, fixed number p, we give algorithms that find the solution in the following running times: For squares we have O(n+k log k) time for p=1, and O(n log n+k^p log^p k time for p = 2,3. For rectangles we get O(n + k^3) for p = 1 and O(n log n+k^{2+p} log^{p-1} k) time for p = 2,3. In all cases, our algorithms use O(n) space.Comment: updated version: - changed problem from 'cover exactly n-k points' to 'cover at least n-k points' to avoid having non-feasible solutions. Results are unchanged. - added Proof to Lemma 11, clarified some sections - corrected typos and small errors - updated affiliations of two author

    Metaheuristics for NP-hard combinatorial optimization problems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimization with Discrete Simultaneous Perturbation Stochastic Approximation Using Noisy Loss Function Measurements

    Get PDF
    Discrete stochastic optimization considers the problem of minimizing (or maximizing) loss functions defined on discrete sets, where only noisy measurements of the loss functions are available. The discrete stochastic optimization problem is widely applicable in practice, and many algorithms have been considered to solve this kind of optimization problem. Motivated by the efficient algorithm of simultaneous perturbation stochastic approximation (SPSA) for continuous stochastic optimization problems, we introduce the middle point discrete simultaneous perturbation stochastic approximation (DSPSA) algorithm for the stochastic optimization of a loss function defined on a p-dimensional grid of points in Euclidean space. We show that the sequence generated by DSPSA converges to the optimal point under some conditions. Consistent with other stochastic approximation methods, DSPSA formally accommodates noisy measurements of the loss function. We also show the rate of convergence analysis of DSPSA by solving an upper bound of the mean squared error of the generated sequence. In order to compare the performance of DSPSA with the other algorithms such as the stochastic ruler algorithm (SR) and the stochastic comparison algorithm (SC), we set up a bridge between DSPSA and the other two algorithms by comparing the probability in a big-O sense of not achieving the optimal solution. We show the theoretical and numerical comparison results of DSPSA, SR, and SC. In addition, we consider an application of DSPSA towards developing optimal public health strategies for containing the spread of influenza given limited societal resources

    Approximation of length minimization problems among compact connected sets

    Get PDF
    In this paper we provide an approximation \`a la Ambrosio-Tortorelli of some classical minimization problems involving the length of an unknown one-dimensional set, with an additional connectedness constraint, in dimension two. We introduce a term of new type relying on a weighted geodesic distance that forces the minimizers to be connected at the limit. We apply this approach to approximate the so-called Steiner Problem, but also the average distance problem, and finally a problem relying on the p-compliance energy. The proof of convergence of the approximating functional, which is stated in terms of Gamma-convergence relies on technical tools from geometric measure theory, as for instance a uniform lower bound for a sort of average directional Minkowski content of a family of compact connected sets
    corecore