5,682 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Greed Works -- Online Algorithms For Unrelated Machine Stochastic Scheduling

    Get PDF
    This paper establishes performance guarantees for online algorithms that schedule stochastic, nonpreemptive jobs on unrelated machines to minimize the expected total weighted completion time. Prior work on unrelated machine scheduling with stochastic jobs was restricted to the offline case, and required linear or convex programming relaxations for the assignment of jobs to machines. The algorithms introduced in this paper are purely combinatorial. The performance bounds are of the same order of magnitude as those of earlier work, and depend linearly on an upper bound on the squared coefficient of variation of the jobs' processing times. Specifically for deterministic processing times, without and with release times, the competitive ratios are 4 and 7.216, respectively. As to the technical contribution, the paper shows how dual fitting techniques can be used for stochastic and nonpreemptive scheduling problems.Comment: Preliminary version appeared in IPCO 201

    Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines

    Get PDF
    We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2−c)(3/2-c)-approximation algorithm for some fixed c>0c>0, improving upon the long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM, 2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/23/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure

    Minimizing value-at-risk in the single-machine total weighted tardiness problem

    Get PDF
    The vast majority of the machine scheduling literature focuses on deterministic problems, in which all data is known with certainty a priori. This may be a reasonable assumption when the variability in the problem parameters is low. However, as variability in the parameters increases incorporating this uncertainty explicitly into a scheduling model is essential to mitigate the resulting adverse effects. In this paper, we consider the celebrated single-machine total weighted tardiness (TWT) problem in the presence of uncertain problem parameters. We impose a probabilistic constraint on the random TWT and introduce a risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) measure on the random TWT at a specified confidence level. Furthermore, we develop a lower bound on the optimal VaR that may also benefit alternate solution approaches in the future. In this study, we implement a tabu-search heuristic to obtain reasonably good feasible solutions and present results to demonstrate the effect of the risk parameter and the value of the proposed model with respect to a corresponding risk-neutral approach

    Scheduling over Scenarios on Two Machines

    Get PDF
    We consider scheduling problems over scenarios where the goal is to find a single assignment of the jobs to the machines which performs well over all possible scenarios. Each scenario is a subset of jobs that must be executed in that scenario and all scenarios are given explicitly. The two objectives that we consider are minimizing the maximum makespan over all scenarios and minimizing the sum of the makespans of all scenarios. For both versions, we give several approximation algorithms and lower bounds on their approximability. With this research into optimization problems over scenarios, we have opened a new and rich field of interesting problems.Comment: To appear in COCOON 2014. The final publication is available at link.springer.co
    • …
    corecore