2,689 research outputs found

    Groupoid Semantics for Thermal Computing

    Full text link
    A groupoid semantics is presented for systems with both logical and thermal degrees of freedom. We apply this to a syntactic model for encryption, and obtain an algebraic characterization of the heat produced by the encryption function, as predicted by Landauer's principle. Our model has a linear representation theory that reveals an underlying quantum semantics, giving for the first time a functorial classical model for quantum teleportation and other quantum phenomena.Comment: We describe a groupoid model for thermodynamic computation, and a quantization procedure that turns encrypted communication into quantum teleportation. Everything is done using higher category theor

    Enabling Secure Database as a Service using Fully Homomorphic Encryption: Challenges and Opportunities

    Full text link
    The database community, at least for the last decade, has been grappling with querying encrypted data, which would enable secure database as a service solutions. A recent breakthrough in the cryptographic community (in 2009) related to fully homomorphic encryption (FHE) showed that arbitrary computation on encrypted data is possible. Successful adoption of FHE for query processing is, however, still a distant dream, and numerous challenges have to be addressed. One challenge is how to perform algebraic query processing of encrypted data, where we produce encrypted intermediate results and operations on encrypted data can be composed. In this paper, we describe our solution for algebraic query processing of encrypted data, and also outline several other challenges that need to be addressed, while also describing the lessons that can be learnt from a decade of work by the database community in querying encrypted data

    Experimental realization of a highly secure chaos communication under strong channel noise

    Full text link
    A one-way coupled spatiotemporally chaotic map lattice is used to contruct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to pratice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.Comment: 15 pages, 5 figure

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    • …
    corecore