7 research outputs found

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Efficient and robust routing of highly variable traffic

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.Includes bibliographical references (p. 316-324).Many emerging applications for the Internet are characterized by highly variable traffic behavior over time that is difficult to predict. Classical approaches to network design rely on a model in which a single traffic matrix is estimated. When actual traffic does not conform to such assumptions, desired bandwidth guarantees cannot be provided to the carried traffic. Currently, Internet Service Providers (ISPs) use gross capacity over-provisioning and manual routing adaptation to avoid network congestion caused by unpredictable traffic. These lead to increased network equipment and operational costs. Development of routing infrastructures that optimize network resources while accommodating extreme traffic unpredictability in a robust and efficient manner will be one of the defining themes in the next phase of expansion of the Internet. This thesis proposes two-phase routing as a capacity efficient and robust strategy for handling highly variable traffic. The scheme allows preconfiguration of the network such that all traffic patterns permissible within the network's natural ingress-egress capacity constraints can be routed with bandwidth guarantees without requiring detection of traffic changes in real-time or reconfiguring the network in response to it.(cont.) The scheme routes traffic in two phases -- traffic entering the network is sent from the source to a set of intermediate nodes in predetermined split ratios that depend on the intermediate nodes, and then from the intermediate nodes to the final destination. The scheme has the desirable properties of supporting static optical layer provisioning in IP-over-Optical networks and indirection in specialized service overlay models unlike previous approaches -- like direct source-destination path routing - for handling variable traffic. This thesis represents the first comprehensive study, problem formulation, and algorithm design for many aspects of two-phase routing. Our contributions can be grouped into three broad parts. First, we consider the problems of minimum cost network design and maximum throughput network routing for the scheme. We give a simple solution for minimum cost network design. For maximum throughput network routing. we design linear program.ling based and combinatorial algorithms. We show how the algorithms can handle a total cost constraint for maximum throughput two-phase routing. This can be used to solve the link capacitate version of minimum cost two-phase routing.(cont.) We establish theoretical bounds on the resource requirements of two-phase routing under throughput and cost models with respect to the optimal scheme that is allowed to make the routing dynamically dependent on the current traffic matrix. We also generalize the traffic split ratios to depend not only on the intermediate nodes but also on source and destination of traffic and solve the corresponding optimization problems. Second, we consider making two-phase routing resilient to network failures. Two-phase routing in IP-over-Optical networks can be protected against router node failures through redistribution of traffic split ratio for the failed router node to other intermediate nodes. We propose two different schemes for provisioning the optical layer to handle router node failures. We develop linear programming formulations for both schemes and a fast combinatorial algorithm for the second scheme so as to maximize network throughput. Two-phase routing can be made resilient against link failures by protecting the first and second phase paths using pre-provisioned restoration mechanisms. We consider three such restoration mechanisms - local (link/span) restoration, K-route path restoration, and shared backup path restoration.(cont.) We provide linear programming formulations and combinatorial algorithms for maximum throughput two-phase routing with local restoration and K-route path restoration. We show that the problem of maximum throughput two-phase routing with shared backup path restoration is JVP-hard. Assuming an approximation oracle for a certain disjoint paths problem (which we also show to be AP-hard), we design a combinatorial algorithm with provable guarantees. Third, we consider the application of two-phase routing to multi-hop Wireless Mesh Networks (WMNs). These networks have recently been of much research interest due to their lowered need for wired infrastructure support and due to envisaged new applications like community wireless networks. We extend our optimization framework for maximum throughput two-phase routing in wired networks to handle routing and scheduling constraints that are peculiar to WMNs and arise from the requirement to handle radio transmit/receive diversity and the phenomenon of wireless link interference. We evaluate various aspects of two-phase routing on actual ISP topologies using the developed algorithms. For the WMN application, we use randomly generated WMN topologies for the evaluations.by Sudipta Sengupta.Ph.D

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore