620 research outputs found

    A comparative study of metaheuristic algorithms for the fertilizer optimization problem

    Get PDF
    Hard combinatorial optimization (CO) problems pose challenges to traditional algorithmic solutions. The search space usually contains a large number of local optimal points and the computational cost to reach a global optimum may be too high for practical use. In this work, we conduct a comparative study of several state-of-the-art metaheuristic algorithms for hard CO problems solving. Our study is motivated by an industrial application called the Fertilizer Blends Optimization. We focus our study on a number of local search metaheuristics and analyze their performance in terms of both runtime efficiency and solution quality. We show that local search granularity (move step size) and the downhill move probability are two major factors that affect algorithm performance, and we demonstrate how experimental tuning work can be applied to obtain good performance of the algorithms. Our empirical result suggests that the well-known Simulated Annealing (SA) algorithm showed the best performance on the fertilizer problem. The simple Iterated Improvement Algorithm (IIA) also performed surprisingly well by combining strict uphill move and random neighborhood selection. A novel approach, called Delivery Network Model (DNM) algorithm, was also shown to be competitive, but it has the disadvantage of being very sensitive to local search granularity. The constructive local search method (GRASP), which combines heuristic space sampling and local search, outperformed IIA without a construction phase; however, the improvement in performance is limited and generally speaking, local search performance is not sensitive to initial search positions in our studied fertilizer problem

    Systematic Literature Review Of Particle Swarm Optimization Implementation For Time-Dependent Vehicle Routing Problem

    Get PDF
    Time-dependent VRP (TDVRP) is one of the three VRP variants that have not been widely explored in research in the field of operational research, while Particle Swarm Optimization (PSO) is an optimization algorithm in the field of operational research that uses many variables in its application. There is much research conducted about TDVRP, but few of them discuss PSO's implementation. This article presented as a literature review which aimed to find a research gap about implementation of PSO to resolve TDVRP cases. The research was conducted in five stages. The first stage, a review protocol defined in the form of research questions and methods to perform the review. The second stage is references searching. The third stage is screening the search result. The fourth stage is extracting data from references based on research questions. The fifth stage is reporting the study literature results. The results obtained from the screening process were 37 eligible reference articles, from 172 search results articles. The results of extraction and analysis of 37 reference articles show that research on TDVRP discusses the duration of travel time between 2 locations. The route optimization parameter is determined from the cost of the trip, including the total distance traveled, the total travel time, the number of routes, and the number used vehicles. The datasets that are used in research consist of 2 types, real-world datasets and simulation datasets. Solomon Benchmark is a simulation dataset that is widely used in the case of TDVRP. Research on PSO in the TDVRP case is dominated by the discussion of modifications to determine random values of PSO variables

    Study of capacitated vehicle routing problem based on particle swarm optimization

    Get PDF
    Vehicle Routing Problem (VRP) is one of the common problems that happen in human life. There are many applications of VRP such as garbage disposal, mail delivery, school bus routing, airline schedule and many more. The main objective of VRP is to minimize the distance of the route starting from a depot, serves all of customers demand, and return back to depot. VRP is one of the optimization problems that belong to NP- hard (Non-deterministic Polynomial-time hard) problem and difficult to solve. VRP has also becomes one of the important topic to discuss and analyze. There are many types of VRP; this research is focusing on capacitated VRP (CVRP). CVRP is defined as the problem of determining optimal routes to be used by vehicles starting from one or more depots to serve all customers’ demand, observing some constraints. Particle Swarm Optimization (PSO) method will be used to solve the VRP problems because there are lots of advantages of PSO. PSO is a population based stochastic optimization technique, inspired by social behavior of bird flocking or fish schooling. The experiment has been done to test this algorithm. Three variants of PSO have been used which are PSO with inertia weight, PSO without inertia weight, and PSO with constriction factor. The results show that the PSO with inertia weight strategy which include PSO with inertia weight and PSO with constriction factor have the best total distance. It can be concluded that PSO with inertia weight strategies have better performance because they take less iteration to arrive at the optimum value. The second comparison also showed that small range of inertia weight has the best total distance

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore