10 research outputs found

    Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices

    Full text link
    This paper proposes an efficient probabilistic method that computes combinatorial gradient fields for two dimensional image data. In contrast to existing algorithms, this approach yields a geometric Morse-Smale complex that converges almost surely to its continuous counterpart when the image resolution is increased. This approach is motivated using basic ideas from probability theory and builds upon an algorithm from discrete Morse theory with a strong mathematical foundation. While a formal proof is only hinted at, we do provide a thorough numerical evaluation of our method and compare it to established algorithms.Comment: 17 pages, 7 figure

    Topological analysis of discrete scalar data

    Get PDF
    This thesis presents a novel computational framework that allows for a robust extraction and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3- dimensional manifold. The proposed framework is based on Forman\u27s discrete Morse theory, which guarantees the topological consistency of the computed complex. Using a graph theoretical formulation of this theory, we present an algorithmic library that computes the Morse-Smale complex combinatorially with an optimal complexity of O(n2)O(n^2) and efficiently creates a multi-level representation of it. We explore the discrete nature of this complex, and relate it to the smooth counterpart. It is often necessary to estimate the feature strength of the individual components of the Morse-Smale complex -- the critical points and separatrices. To do so, we propose a novel output-sensitive strategy to compute the persistence of the critical points. We also extend this wellfounded concept to separatrices by introducing a novel measure of feature strength called separatrix persistence. We evaluate the applicability of our methods in a wide variety of application areas ranging from computer graphics to planetary science to computer and electron tomography.In dieser Dissertation präsentieren wir ein neues System zur robusten Berechnung des Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vorgestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphentheoretischer Formulierung präesentieren wir eine Bibliothek von Algorithmen, die es erlaubt, den Morse-Smale Komplex mit einer optimalen Kompliztät von O(n2)O(n^2) kombinatorisch zu berechnen und effizient eine mehrskalige Repräsentation davon erstellt. Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem kontinuierlichen Gegenstück. Es ist häufig notwendig, die Merkmalsstärke einzelner Bestandteile des Komplexes -- der kritischen Punkte und Separatrizen -- abzuschätzen. Hierfür stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kritischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen durch die Einführung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die Anwendbarkeit unserer Methoden anhand vielfältiger Anwendungen aus den Gebieten der Computergrafik, Planetologie, Computer- und Elektronentomographie

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement

    Human Guidance Behavior Decomposition and Modeling

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2017. Major: Aerospace Engineering. Advisor: Berenice Mettler. 1 computer file (PDF); x, 128 pages.Trained humans are capable of high performance, adaptable, and robust first-person dynamic motion guidance behavior. This behavior is exhibited in a wide variety of activities such as driving, piloting aircraft, skiing, biking, and many others. Human performance in such activities far exceeds the current capability of autonomous systems in terms of adaptability to new tasks, real-time motion planning, robustness, and trading safety for performance. The present work investigates the structure of human dynamic motion guidance that enables these performance qualities. This work uses a first-person experimental framework that presents a driving task to the subject, measuring control inputs, vehicle motion, and operator visual gaze movement. The resulting data is decomposed into subspace segment clusters that form primitive elements of action-perception interactive behavior. Subspace clusters are defined by both agent-environment system dynamic constraints and operator control strategies. A key contribution of this work is to define transitions between subspace cluster segments, or subgoals, as points where the set of active constraints, either system or operator defined, changes. This definition provides necessary conditions to determine transition points for a given task-environment scenario that allow a solution trajectory to be planned from known behavior elements. In addition, human gaze behavior during this task contains predictive behavior elements, indicating that the identified control modes are internally modeled. Based on these ideas, a generative, autonomous guidance framework is introduced that efficiently generates optimal dynamic motion behavior in new tasks. The new subgoal planning algorithm is shown to generate solutions to certain tasks more quickly than existing approaches currently used in robotics
    corecore