7,956 research outputs found

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Algorithms and Conditional Lower Bounds for Planning Problems

    Full text link
    We consider planning problems for graphs, Markov decision processes (MDPs), and games on graphs. While graphs represent the most basic planning model, MDPs represent interaction with nature and games on graphs represent interaction with an adversarial environment. We consider two planning problems where there are k different target sets, and the problems are as follows: (a) the coverage problem asks whether there is a plan for each individual target set, and (b) the sequential target reachability problem asks whether the targets can be reached in sequence. For the coverage problem, we present a linear-time algorithm for graphs and quadratic conditional lower bound for MDPs and games on graphs. For the sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our results with conditional lower bounds establish (i) model-separation results showing that for the coverage problem MDPs and games on graphs are harder than graphs and for the sequential reachability problem games on graphs are harder than MDPs and graphs; (ii) objective-separation results showing that for MDPs the coverage problem is harder than the sequential target problem.Comment: Accepted at ICAPS'1

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
    • …
    corecore