2,507 research outputs found

    Combinatorial clustering and the beta negative binomial process

    Full text link
    We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual. We introduce a combinatorial stochastic process known as the negative binomial process (NBP) as an infinite-dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we characterize the posterior distribution under the beta-negative binomial process (BNBP) and hierarchical models based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP and develop a three-parameter extension of the BNBP that exhibits power-law behavior. We derive MCMC algorithms for posterior inference under the HBNBP, and we present experiments using these algorithms in the domains of image segmentation, object recognition, and document analysis.Comment: 56 pages, 4 figures, 6 table

    Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes

    Full text link
    We define a family of probability distributions for random count matrices with a potentially unbounded number of rows and columns. The three distributions we consider are derived from the gamma-Poisson, gamma-negative binomial, and beta-negative binomial processes. Because the models lead to closed-form Gibbs sampling update equations, they are natural candidates for nonparametric Bayesian priors over count matrices. A key aspect of our analysis is the recognition that, although the random count matrices within the family are defined by a row-wise construction, their columns can be shown to be i.i.d. This fact is used to derive explicit formulas for drawing all the columns at once. Moreover, by analyzing these matrices' combinatorial structure, we describe how to sequentially construct a column-i.i.d. random count matrix one row at a time, and derive the predictive distribution of a new row count vector with previously unseen features. We describe the similarities and differences between the three priors, and argue that the greater flexibility of the gamma- and beta- negative binomial processes, especially their ability to model over-dispersed, heavy-tailed count data, makes these well suited to a wide variety of real-world applications. As an example of our framework, we construct a naive-Bayes text classifier to categorize a count vector to one of several existing random count matrices of different categories. The classifier supports an unbounded number of features, and unlike most existing methods, it does not require a predefined finite vocabulary to be shared by all the categories, and needs neither feature selection nor parameter tuning. Both the gamma- and beta- negative binomial processes are shown to significantly outperform the gamma-Poisson process for document categorization, with comparable performance to other state-of-the-art supervised text classification algorithms.Comment: To appear in Journal of the American Statistical Association (Theory and Methods). 31 pages + 11 page supplement, 5 figure

    Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership Modeling

    Full text link
    The beta-negative binomial process (BNBP), an integer-valued stochastic process, is employed to partition a count vector into a latent random count matrix. As the marginal probability distribution of the BNBP that governs the exchangeable random partitions of grouped data has not yet been developed, current inference for the BNBP has to truncate the number of atoms of the beta process. This paper introduces an exchangeable partition probability function to explicitly describe how the BNBP clusters the data points of each group into a random number of exchangeable partitions, which are shared across all the groups. A fully collapsed Gibbs sampler is developed for the BNBP, leading to a novel nonparametric Bayesian topic model that is distinct from existing ones, with simple implementation, fast convergence, good mixing, and state-of-the-art predictive performance.Comment: in Neural Information Processing Systems (NIPS) 2014. 9 pages + 3 page appendi

    Generalized Negative Binomial Processes and the Representation of Cluster Structures

    Full text link
    The paper introduces the concept of a cluster structure to define a joint distribution of the sample size and its exchangeable random partitions. The cluster structure allows the probability distribution of the random partitions of a subset of the sample to be dependent on the sample size, a feature not presented in a partition structure. A generalized negative binomial process count-mixture model is proposed to generate a cluster structure, where in the prior the number of clusters is finite and Poisson distributed and the cluster sizes follow a truncated negative binomial distribution. The number and sizes of clusters can be controlled to exhibit distinct asymptotic behaviors. Unique model properties are illustrated with example clustering results using a generalized Polya urn sampling scheme. The paper provides new methods to generate exchangeable random partitions and to control both the cluster-number and cluster-size distributions.Comment: 30 pages, 8 figure

    Cluster and Feature Modeling from Combinatorial Stochastic Processes

    Full text link
    One of the focal points of the modern literature on Bayesian nonparametrics has been the problem of clustering, or partitioning, where each data point is modeled as being associated with one and only one of some collection of groups called clusters or partition blocks. Underlying these Bayesian nonparametric models are a set of interrelated stochastic processes, most notably the Dirichlet process and the Chinese restaurant process. In this paper we provide a formal development of an analogous problem, called feature modeling, for associating data points with arbitrary nonnegative integer numbers of groups, now called features or topics. We review the existing combinatorial stochastic process representations for the clustering problem and develop analogous representations for the feature modeling problem. These representations include the beta process and the Indian buffet process as well as new representations that provide insight into the connections between these processes. We thereby bring the same level of completeness to the treatment of Bayesian nonparametric feature modeling that has previously been achieved for Bayesian nonparametric clustering.Comment: Published in at http://dx.doi.org/10.1214/13-STS434 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Poisson Latent Feature Calculus for Generalized Indian Buffet Processes

    Full text link
    The purpose of this work is to describe a unified, and indeed simple, mechanism for non-parametric Bayesian analysis, construction and generative sampling of a large class of latent feature models which one can describe as generalized notions of Indian Buffet Processes(IBP). This is done via the Poisson Process Calculus as it now relates to latent feature models. The IBP was ingeniously devised by Griffiths and Ghahramani in (2005) and its generative scheme is cast in terms of customers entering sequentially an Indian Buffet restaurant and selecting previously sampled dishes as well as new dishes. In this metaphor dishes corresponds to latent features, attributes, preferences shared by individuals. The IBP, and its generalizations, represent an exciting class of models well suited to handle high dimensional statistical problems now common in this information age. The IBP is based on the usage of conditionally independent Bernoulli random variables, coupled with completely random measures acting as Bayesian priors, that are used to create sparse binary matrices. This Bayesian non-parametric view was a key insight due to Thibaux and Jordan (2007). One way to think of generalizations is to to use more general random variables. Of note in the current literature are models employing Poisson and Negative-Binomial random variables. However, unlike their closely related counterparts, generalized Chinese restaurant processes, the ability to analyze IBP models in a systematic and general manner is not yet available. The limitations are both in terms of knowledge about the effects of different priors and in terms of models based on a wider choice of random variables. This work will not only provide a thorough description of the properties of existing models but also provide a simple template to devise and analyze new models.Comment: This version provides more details for the multivariate extensions in section 5. We highlight the case of a simple multinomial distribution and showcase a multivariate Levy process prior we call a stable-Beta Dirichlet process. Section 4.1.1 expande

    Generalized Species Sampling Priors with Latent Beta reinforcements

    Full text link
    Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a {novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.Comment: For correspondence purposes, Edoardo M. Airoldi's email is [email protected]; Federico Bassetti's email is [email protected]; Michele Guindani's email is [email protected] ; Fabrizo Leisen's email is [email protected]. To appear in the Journal of the American Statistical Associatio
    • …
    corecore