291 research outputs found

    Combinatorial Algorithms for General Linear Arrow-Debreu Markets

    Get PDF
    We present a combinatorial algorithm for determining the market clearing prices of a general linear Arrow-Debreu market, where every agent can own multiple goods. The existing combinatorial algorithms for linear Arrow-Debreu markets consider the case where each agent can own all of one good only. We present an O~((n+m)^7 log^3(UW)) algorithm where n, m, U and W refer to the number of agents, the number of goods, the maximal integral utility and the maximum quantity of any good in the market respectively. The algorithm refines the iterative algorithm of Duan, Garg and Mehlhorn using several new ideas. We also identify the hard instances for existing combinatorial algorithms for linear Arrow-Debreu markets. In particular we find instances where the ratio of the maximum to the minimum equilibrium price of a good is U^{Omega(n)} and the number of iterations required by the existing iterative combinatorial algorithms of Duan, and Mehlhorn and Duan, Garg, and Mehlhorn are high. Our instances also separate the two algorithms

    Non-Separable, Quasiconcave Utilities are Easy -- in a Perfect Price Discrimination Market Model

    Full text link
    Recent results, establishing evidence of intractability for such restrictive utility functions as additively separable, piecewise-linear and concave, under both Fisher and Arrow-Debreu market models, have prompted the question of whether we have failed to capture some essential elements of real markets, which seem to do a good job of finding prices that maintain parity between supply and demand. The main point of this paper is to show that even non-separable, quasiconcave utility functions can be handled efficiently in a suitably chosen, though natural, realistic and useful, market model; our model allows for perfect price discrimination. Our model supports unique equilibrium prices and, for the restriction to concave utilities, satisfies both welfare theorems

    A Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market

    Get PDF
    We present the first combinatorial polynomial time algorithm for computing the equilibrium of the Arrow-Debreu market model with linear utilities.Comment: Preliminary version in ICALP 201

    Ascending-Price Algorithms for Unknown Markets

    Full text link
    We design a simple ascending-price algorithm to compute a (1+ε)(1+\varepsilon)-approximate equilibrium in Arrow-Debreu exchange markets with weak gross substitute (WGS) property, which runs in time polynomial in market parameters and log1/ε\log 1/\varepsilon. This is the first polynomial-time algorithm for most of the known tractable classes of Arrow-Debreu markets, which is easy to implement and avoids heavy machinery such as the ellipsoid method. In addition, our algorithm can be applied in unknown market setting without exact knowledge about the number of agents, their individual utilities and endowments. Instead, our algorithm only relies on queries to a global demand oracle by posting prices and receiving aggregate demand for goods as feedback. When demands are real-valued functions of prices, the oracles can only return values of bounded precision based on real utility functions. Due to this more realistic assumption, precision and representation of prices and demands become a major technical challenge, and we develop new tools and insights that may be of independent interest. Furthermore, our approach also gives the first polynomial-time algorithm to compute an exact equilibrium for markets with spending constraint utilities, a piecewise linear concave generalization of linear utilities. This resolves an open problem posed by Duan and Mehlhorn (2015).Comment: 33 page

    Computing Equilibria in Markets with Budget-Additive Utilities

    Get PDF
    We present the first analysis of Fisher markets with buyers that have budget-additive utility functions. Budget-additive utilities are elementary concave functions with numerous applications in online adword markets and revenue optimization problems. They extend the standard case of linear utilities and have been studied in a variety of other market models. In contrast to the frequently studied CES utilities, they have a global satiation point which can imply multiple market equilibria with quite different characteristics. Our main result is an efficient combinatorial algorithm to compute a market equilibrium with a Pareto-optimal allocation of goods. It relies on a new descending-price approach and, as a special case, also implies a novel combinatorial algorithm for computing a market equilibrium in linear Fisher markets. We complement these positive results with a number of hardness results for related computational questions. We prove that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation points for each buyer and each good.Comment: 21 page

    An Improved Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market

    Get PDF
    We present an improved combinatorial algorithm for the computation of equilibrium prices in the linear Arrow-Debreu model. For a market with nn agents and integral utilities bounded by UU, the algorithm runs in O(n7log3(nU))O(n^7 \log^3 (nU)) time. This improves upon the previously best algorithm of Ye by a factor of \tOmega(n). The algorithm refines the algorithm described by Duan and Mehlhorn and improves it by a factor of \tOmega(n^3). The improvement comes from a better understanding of the iterative price adjustment process, the improved balanced flow computation for nondegenerate instances, and a novel perturbation technique for achieving nondegeneracy.Comment: to appear in SODA 201

    On Computability of Equilibria in Markets with Production

    Full text link
    Although production is an integral part of the Arrow-Debreu market model, most of the work in theoretical computer science has so far concentrated on markets without production, i.e., the exchange economy. This paper takes a significant step towards understanding computational aspects of markets with production. We first define the notion of separable, piecewise-linear concave (SPLC) production by analogy with SPLC utility functions. We then obtain a linear complementarity problem (LCP) formulation that captures exactly the set of equilibria for Arrow-Debreu markets with SPLC utilities and SPLC production, and we give a complementary pivot algorithm for finding an equilibrium. This settles a question asked by Eaves in 1975 of extending his complementary pivot algorithm to markets with production. Since this is a path-following algorithm, we obtain a proof of membership of this problem in PPAD, using Todd, 1976. We also obtain an elementary proof of existence of equilibrium (i.e., without using a fixed point theorem), rationality, and oddness of the number of equilibria. We further give a proof of PPAD-hardness for this problem and also for its restriction to markets with linear utilities and SPLC production. Experiments show that our algorithm runs fast on randomly chosen examples, and unlike previous approaches, it does not suffer from issues of numerical instability. Additionally, it is strongly polynomial when the number of goods or the number of agents and firms is constant. This extends the result of Devanur and Kannan (2008) to markets with production. Finally, we show that an LCP-based approach cannot be extended to PLC (non-separable) production, by constructing an example which has only irrational equilibria.Comment: An extended abstract will appear in SODA 201

    Network Cournot Competition

    Full text link
    Cournot competition is a fundamental economic model that represents firms competing in a single market of a homogeneous good. Each firm tries to maximize its utility---a function of the production cost as well as market price of the product---by deciding on the amount of production. In today's dynamic and diverse economy, many firms often compete in more than one market simultaneously, i.e., each market might be shared among a subset of these firms. In this situation, a bipartite graph models the access restriction where firms are on one side, markets are on the other side, and edges demonstrate whether a firm has access to a market or not. We call this game \emph{Network Cournot Competition} (NCC). In this paper, we propose algorithms for finding pure Nash equilibria of NCC games in different situations. First, we carefully design a potential function for NCC, when the price functions for markets are linear functions of the production in that market. However, for nonlinear price functions, this approach is not feasible. We model the problem as a nonlinear complementarity problem in this case, and design a polynomial-time algorithm that finds an equilibrium of the game for strongly convex cost functions and strongly monotone revenue functions. We also explore the class of price functions that ensures strong monotonicity of the revenue function, and show it consists of a broad class of functions. Moreover, we discuss the uniqueness of equilibria in both of these cases which means our algorithms find the unique equilibria of the games. Last but not least, when the cost of production in one market is independent from the cost of production in other markets for all firms, the problem can be separated into several independent classical \emph{Cournot Oligopoly} problems. We give the first combinatorial algorithm for this widely studied problem
    corecore