13 research outputs found

    Internet of Things (IoT) Utilization to Improve Performance and Productivity of Internal Supply Chain

    Get PDF
    The inevitable transformations brought about by the rapidly changing Internet of Things (IoT) impact all aspects of life today, including management and businesses. Specifically, areas of businesses depending mainly on internal supply chain capacity are experiencing a paradigm shift to ensure effective company performance regarding purchases, production, company sales, and product distribution. This shift means that challenges faced by the internal chain supply unit can be solved by adopting and adapting IoT as a new way to minimize work delays and save time. Moreover, IoT automatically leads to performance and productivity increases. Therefore, the present paper aims to justify adopting and adapting IoT applications in Indonesian companies, including retail businesses. Most companies’ internal supply chain units face several difficulties during and after the devastating peak of COVID-19, which has led to a total global lockdown. These problems' complexity is exponential and requires innovative ways to solve their prevailing challenges. This study used observation, interview, and documentary research methods through a large-scale survey. The survey obtained the necessary information regarding how companies utilize IoT to improve their performance and productivity without hindering their internal supply chain and production units. The study concluded that the adoption of IoT, if well implemented, leads to a sustainable company and uninterrupted supply chain performance, indicating the proper performance of the organization. Doi: 10.28991/esj-2021-SP1-017 Full Text: PD

    Coordinating concurrent transmissions : a constant-factor approximation of maximum-weight independent set in local conflict graphs

    Get PDF
    We study the algorithmic problem of coordinating transmissions in a wireless network where radio interference constrains concurrent transmissions on wireless links. We focus on pairwise conflicts between the links; these can be described as a conflict graph. Associated with the conflict graph are two fundamental network coordination tasks: (a) finding a nonconflicting set of links with the maximum total weight, and (b) finding a link schedule with the minimum total length. Our work shows that two assumptions on the geometric structure of conflict graphs suffice to achieve polynomial-time constant-factor approximations: (i) bounded density of devices, and (ii) bounded range of interference. We also show that these assumptions are not sufficient to obtain a polynomial-time approximation scheme (PTAS) for either coordination task. There exists a PTAS if we make an additional assumption: (iii) bounded range of radio transmissions

    Network flow algorithms for wireless networks and design and analysis of rate compatible LDPC codes

    Get PDF
    While Shannon already characterized the capacity of point-to-point channels back in 1948, characterizing the capacity of wireless networks has been a challenging problem. The deterministic channel model proposed by Avestimehr, etc. (2007 - 1) has been a promising approach for approximating the Gaussian channel capacity and has been widely studied recently. Motivated by this model, an improved combinatorial algorithm is considered for finding the unicast capacity for wireless information flow on such deterministic networks in the first part of this thesis. Our algorithm fully explores the useful combinatorial features intrinsic in the problem. Our improvement applies generally with any size of finite fields associated with the channel model. Comparing with other related algorithms, our improved algorithm has very competitive performance in complexity. In the second part of our work, we consider the design and analysis of rate-compatible LDPC codes. Rate-compatible LDPC codes are basically a family of nested codes, operating at different code rates and all of them can be encoded and decoded using a single encoder and decoder pair. Those properties make rate-compatible LDPC codes a good choice for changing channel conditions, like in wireless communications. The previous work on the design and analysis of LDPC codes are all targeting at a specific code rate and no work is known on the design and analysis of rate-compatible LDPC codes so that the code performance at all code rates in the family is manageable and predictable. In our work, we proposed algorithms for the design and analysis of rate-compatible LDPC codes with good performance and make the code performance at all code rates manageable and predictable. Our work is based on E2RC codes, while our approaches in the design and analysis can be applied more generally not only to E2RC codes, but to other suitable scenarios, like the design of IRA codes. Most encouragingly, we obtain families of rate-compatible codes whose gaps to capacity are at most 0.3 dB across the range of rates when the maximum variable node degree is twenty, which is very promising compared with other existing results

    Proceedings of SAT Competition 2021 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Model-Based Heuristics for Combinatorial Optimization

    Get PDF
    Many problems arising in several and different areas of human knowledge share the characteristic of being intractable in real cases. The relevance of the solution of these problems, linked to their domain of action, has given birth to many frameworks of algorithms for solving them. Traditional solution paradigms are represented by exact and heuristic algorithms. In order to overcome limitations of both approaches and obtain better performances, tailored combinations of exact and heuristic methods have been studied, giving birth to a new paradigm for solving hard combinatorial optimization problems, constituted by model-based metaheuristics. In the present thesis, we deepen the issue of model-based metaheuristics, and present some methods, belonging to this class, applied to the solution of combinatorial optimization problems
    corecore