118 research outputs found

    Harnessing Simulation Acceleration to Solve the Digital Design Verification Challenge.

    Full text link
    Today, design verification is by far the most resource and time-consuming activity of any new digital integrated circuit development. Within this area, the vast majority of the verification effort in industry relies on simulation platforms, which are implemented either in hardware or software. A "simulator" includes a model of each component of a design and has the capability of simulating its behavior under any input scenario provided by an engineer. Thus, simulators are deployed to evaluate the behavior of a design under as many input scenarios as possible and to identify and debug all incorrect functionality. Two features are critical in simulators for the validation effort to be effective: performance and checking/debugging capabilities. A wide range of simulator platforms are available today: on one end of the spectrum there are software-based simulators, providing a very rich software infrastructure for checking and debugging the design's functionality, but executing only at 1-10 simulation cycles per second (while actual chips operate at GHz speeds). At the other end of the spectrum, there are hardware-based platforms, such as accelerators, emulators and even prototype silicon chips, providing higher performances by 4 to 9 orders of magnitude, at the cost of very limited or non-existent checking/debugging capabilities. As a result, today, simulation-based validation is crippled: one can either have satisfactory performance on hardware-accelerated platforms or critical infrastructures for checking/debugging on software simulators, but not both. This dissertation brings together these two ends of the spectrum by presenting solutions that offer high-performance simulation with effective checking and debugging capabilities. Specifically, it addresses the performance challenge of software simulators by leveraging inexpensive off-the-shelf graphics processors as massively parallel execution substrates, and then exposing the parallelism inherent in the design model to that architecture. For hardware-based platforms, the dissertation provides solutions that offer enhanced checking and debugging capabilities by abstracting the relevant data to be logged during simulation so to minimize the cost of collection, transfer and processing. Altogether, the contribution of this dissertation has the potential to solve the challenge of digital design verification by enabling effective high-performance simulation-based validation.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99781/1/dchatt_1.pd

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    System-level trace signal selection for post-silicon debug using linear programming

    Get PDF
    Due to the increasing complexity of modern digital designs using NoC (network- on-chip) communication, post-silicon validation has become and arduous task that consumes much of the development time of the product. The process of finding the root cause of bugs found in post-silicon validation has proven to be much more difficult than in pre-silicon because of the lack of the observability of all signals on chip. Trace buffers are a often used structure in post-silicon debug that stores the state of a selected signal into an on-chip buffer, where they can be offloaded for a debugger to observe. However, because of area limitations for debug structures on chip and routing concerns, the signals that are selected to be traced must be a very small subset of all available signals. Traditionally, these trace signals were chosen manually by system designers who determined what signals may be needed for debug once the design reaches post-silicon. However, because modern digital designs have become very complex with many concurrent processes, this method is no longer reliable as designers can no longer fully understand the complexities that are involved within these designs. Recent work has concentrated on automating the selection of low level signals from a gate-level analysis. In this work, we present the first automated system-level, message-based trace selection where the guiding principle is functional coverage of system-level messages. We use a linear programming formulation to find multiple so- lutions that allow tracing of the high-frequency messages and then further analyze these solutions using a message interval heuristic. This method pro- duces traces that allow a debugger to observe when behavior has deviated from the correct path of execution and localize this incorrect behavior for fur- ther analysis. In addition, this method drastically reduces the time needed to select signals, as we automate a currently manual process

    Protocol-directed trace signal selection for post-silicon validation

    Get PDF
    Due to the increasing complexity of modern digital designs using NoC (network-on-chip) communication, post-silicon validation has become an arduous task that consumes much of the development time of the product. The process of finding the root cause of bugs during post-silicon validation is very difficult because of the lack of observability of all signals on the chip. To increase observability for post-silicon validation, an effective silicon debug technique is to use an on-chip trace buffer to monitor and capture the circuit response of certain selected signals during its post-silicon operation. However, because of area limitations for debug structures on chip and routing concerns, the signals that are selected to be traced are a very small subset of all available signals. Traditionally, these trace signals were chosen manually by system designers who determined what signals may be needed for debug once the design reaches post-silicon. However, because modern digital designs have become very complex with many concurrent processes, this method is no longer reliable. Recent work has concentrated on automating the selection of low-level signals from a gate-level analysis. But none of them has ever been able to interpret the trace signals as high-level meaningful debugging information. In this work, we present an automated protocol-directed trace selection where the guiding force is the set of system-level protocols. We use a probabilistic formulation to select messages for tracing and then further analyze these solutions. This method produces traces that allow a debugger to observe when behavior has deviated from the correct path of execution and localize this incorrect behavior for further analysis. Most importantly, unlike the previous gate-level analysis based methods, this method can be applied during the chip design phase when most of the debug features are also designed. In addition, this method drastically reduces the time needed to select signals, as we automate a currently manual process

    Reining in the Functional Verification of Complex Processor Designs with Automation, Prioritization, and Approximation

    Full text link
    Our quest for faster and efficient computing devices has led us to processor designs with enormous complexity. As a result, functional verification, which is the process of ascertaining the correctness of a processor design, takes up a lion's share of the time and cost spent on making processors. Unfortunately, functional verification is only a best-effort process that cannot completely guarantee the correctness of a design, often resulting in defective products that may have devastating consequences.Functional verification, as practiced today, is unable to cope with the complexity of current and future processor designs. In this dissertation, we identify extensive automation as the essential step towards scalable functional verification of complex processor designs. Moreover, recognizing that a complete guarantee of design correctness is impossible, we argue for systematic prioritization and prudent approximation to realize fast and far-reaching functional verification solutions. We partition the functional verification effort into three major activities: planning and test generation, test execution and bug detection, and bug diagnosis. Employing a perspective we refer to as the automation, prioritization, and approximation (APA) approach, we develop solutions that tackle challenges across these three major activities. In pursuit of efficient planning and test generation for modern systems-on-chips, we develop an automated process for identifying high-priority design aspects for verification. In addition, we enable the creation of compact test programs, which, in our experiments, were up to 11 times smaller than what would otherwise be available at the beginning of the verification effort. To tackle challenges in test execution and bug detection, we develop a group of solutions that enable the deployment of automatic and robust mechanisms for catching design flaws during high-speed functional verification. By trading accuracy for speed, these solutions allow us to unleash functional verification platforms that are over three orders of magnitude faster than traditional platforms, unearthing design flaws that are otherwise impossible to reach. Finally, we address challenges in bug diagnosis through a solution that fully automates the process of pinpointing flawed design components after detecting an error. Our solution, which identifies flawed design units with over 70% accuracy, eliminates weeks of diagnosis effort for every detected error.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137057/1/birukw_1.pd

    New techniques for functional testing of microprocessor based systems

    Get PDF
    Electronic devices may be affected by failures, for example due to physical defects. These defects may be introduced during the manufacturing process, as well as during the normal operating life of the device due to aging. How to detect all these defects is not a trivial task, especially in complex systems such as processor cores. Nevertheless, safety-critical applications do not tolerate failures, this is the reason why testing such devices is needed so to guarantee a correct behavior at any time. Moreover, testing is a key parameter for assessing the quality of a manufactured product. Consolidated testing techniques are based on special Design for Testability (DfT) features added in the original design to facilitate test effectiveness. Design, integration, and usage of the available DfT for testing purposes are fully supported by commercial EDA tools, hence approaches based on DfT are the standard solutions adopted by silicon vendors for testing their devices. Tests exploiting the available DfT such as scan-chains manipulate the internal state of the system, differently to the normal functional mode, passing through unreachable configurations. Alternative solutions that do not violate such functional mode are defined as functional tests. In microprocessor based systems, functional testing techniques include software-based self-test (SBST), i.e., a piece of software (referred to as test program) which is uploaded in the system available memory and executed, with the purpose of exciting a specific part of the system and observing the effects of possible defects affecting it. SBST has been widely-studies by the research community for years, but its adoption by the industry is quite recent. My research activities have been mainly focused on the industrial perspective of SBST. The problem of providing an effective development flow and guidelines for integrating SBST in the available operating systems have been tackled and results have been provided on microprocessor based systems for the automotive domain. Remarkably, new algorithms have been also introduced with respect to state-of-the-art approaches, which can be systematically implemented to enrich SBST suites of test programs for modern microprocessor based systems. The proposed development flow and algorithms are being currently employed in real electronic control units for automotive products. Moreover, a special hardware infrastructure purposely embedded in modern devices for interconnecting the numerous on-board instruments has been interest of my research as well. This solution is known as reconfigurable scan networks (RSNs) and its practical adoption is growing fast as new standards have been created. Test and diagnosis methodologies have been proposed targeting specific RSN features, aimed at checking whether the reconfigurability of such networks has not been corrupted by defects and, in this case, at identifying the defective elements of the network. The contribution of my work in this field has also been included in the first suite of public-domain benchmark networks

    Error Detection and Diagnosis for System-on-Chip in Space Applications

    Get PDF
    Tesis por compendio de publicacionesLos componentes electrónicos comerciales, comúnmente llamados componentes Commercial-Off-The-Shelf (COTS) están presentes en multitud de dispositivos habituales en nuestro día a día. Particularmente, el uso de microprocesadores y sistemas en chip (SoC) altamente integrados ha favorecido la aparición de dispositivos electrónicos cada vez más inteligentes que sostienen el estilo de vida y el avance de la sociedad moderna. Su uso se ha generalizado incluso en aquellos sistemas que se consideran críticos para la seguridad, como vehículos, aviones, armamento, dispositivos médicos, implantes o centrales eléctricas. En cualquiera de ellos, un fallo podría tener graves consecuencias humanas o económicas. Sin embargo, todos los sistemas electrónicos conviven constantemente con factores internos y externos que pueden provocar fallos en su funcionamiento. La capacidad de un sistema para funcionar correctamente en presencia de fallos se denomina tolerancia a fallos, y es un requisito en el diseño y operación de sistemas críticos. Los vehículos espaciales como satélites o naves espaciales también hacen uso de microprocesadores para operar de forma autónoma o semi autónoma durante su vida útil, con la dificultad añadida de que no pueden ser reparados en órbita, por lo que se consideran sistemas críticos. Además, las duras condiciones existentes en el espacio, y en particular los efectos de la radiación, suponen un gran desafío para el correcto funcionamiento de los dispositivos electrónicos. Concretamente, los fallos transitorios provocados por radiación (conocidos como soft errors) tienen el potencial de ser una de las mayores amenazas para la fiabilidad de un sistema en el espacio. Las misiones espaciales de gran envergadura, típicamente financiadas públicamente como en el caso de la NASA o la Agencia Espacial Europea (ESA), han tenido históricamente como requisito evitar el riesgo a toda costa por encima de cualquier restricción de coste o plazo. Por ello, la selección de componentes resistentes a la radiación (rad-hard) específicamente diseñados para su uso en el espacio ha sido la metodología imperante en el paradigma que hoy podemos denominar industria espacial tradicional, u Old Space. Sin embargo, los componentes rad-hard tienen habitualmente un coste mucho más alto y unas prestaciones mucho menores que otros componentes COTS equivalentes. De hecho, los componentes COTS ya han sido utilizados satisfactoriamente en misiones de la NASA o la ESA cuando las prestaciones requeridas por la misión no podían ser cubiertas por ningún componente rad-hard existente. En los últimos años, el acceso al espacio se está facilitando debido en gran parte a la entrada de empresas privadas en la industria espacial. Estas empresas no siempre buscan evitar el riesgo a toda costa, sino que deben perseguir una rentabilidad económica, por lo que hacen un balance entre riesgo, coste y plazo mediante gestión del riesgo en un paradigma denominado Nuevo Espacio o New Space. Estas empresas a menudo están interesadas en entregar servicios basados en el espacio con las máximas prestaciones y el mayor beneficio posibles, para lo cual los componentes rad-hard son menos atractivos debido a su mayor coste y menores prestaciones que los componentes COTS existentes. Sin embargo, los componentes COTS no han sido específicamente diseñados para su uso en el espacio y típicamente no incluyen técnicas específicas para evitar que los efectos de la radiación afecten su funcionamiento. Los componentes COTS se comercializan tal cual son, y habitualmente no es posible modificarlos para mejorar su resistencia a la radiación. Además, los elevados niveles de integración de los sistemas en chip (SoC) complejos de altas prestaciones dificultan su observación y la aplicación de técnicas de tolerancia a fallos. Este problema es especialmente relevante en el caso de los microprocesadores. Por tanto, existe un gran interés en el desarrollo de técnicas que permitan conocer y mejorar el comportamiento de los microprocesadores COTS bajo radiación sin modificar su arquitectura y sin interferir en su funcionamiento para facilitar su uso en el espacio y con ello maximizar las prestaciones de las misiones espaciales presentes y futuras. En esta Tesis se han desarrollado técnicas novedosas para detectar, diagnosticar y mitigar los errores producidos por radiación en microprocesadores y sistemas en chip (SoC) comerciales, utilizando la interfaz de traza como punto de observación. La interfaz de traza es un recurso habitual en los microprocesadores modernos, principalmente enfocado a soportar las tareas de desarrollo y depuración del software durante la fase de diseño. Sin embargo, una vez el desarrollo ha concluido, la interfaz de traza típicamente no se utiliza durante la fase operativa del sistema, por lo que puede ser reutilizada sin coste. La interfaz de traza constituye un punto de conexión viable para observar el comportamiento de un microprocesador de forma no intrusiva y sin interferir en su funcionamiento. Como resultado de esta Tesis se ha desarrollado un módulo IP capaz de recabar y decodificar la información de traza de un microprocesador COTS moderno de altas prestaciones. El IP es altamente configurable y personalizable para adaptarse a diferentes aplicaciones y tipos de procesadores. Ha sido diseñado y validado utilizando el dispositivo Zynq-7000 de Xilinx como plataforma de desarrollo, que constituye un dispositivo COTS de interés en la industria espacial. Este dispositivo incluye un procesador ARM Cortex-A9 de doble núcleo, que es representativo del conjunto de microprocesadores hard-core modernos de altas prestaciones. El IP resultante es compatible con la tecnología ARM CoreSight, que proporciona acceso a información de traza en los microprocesadores ARM. El IP incorpora técnicas para detectar errores en el flujo de ejecución y en los datos de la aplicación ejecutada utilizando la información de traza, en tiempo real y con muy baja latencia. El IP se ha validado en campañas de inyección de fallos y también en radiación con protones y neutrones en instalaciones especializadas. También se ha combinado con otras técnicas de tolerancia a fallos para construir técnicas híbridas de mitigación de errores. Los resultados experimentales obtenidos demuestran su alta capacidad de detección y potencialidad en el diagnóstico de errores producidos por radiación. El resultado de esta Tesis, desarrollada en el marco de un Doctorado Industrial entre la Universidad Carlos III de Madrid (UC3M) y la empresa Arquimea, se ha transferido satisfactoriamente al entorno empresarial en forma de un proyecto financiado por la Agencia Espacial Europea para continuar su desarrollo y posterior explotación.Commercial electronic components, also known as Commercial-Off-The-Shelf (COTS), are present in a wide variety of devices commonly used in our daily life. Particularly, the use of microprocessors and highly integrated System-on-Chip (SoC) devices has fostered the advent of increasingly intelligent electronic devices which sustain the lifestyles and the progress of modern society. Microprocessors are present even in safety-critical systems, such as vehicles, planes, weapons, medical devices, implants, or power plants. In any of these cases, a fault could involve severe human or economic consequences. However, every electronic system deals continuously with internal and external factors that could provoke faults in its operation. The capacity of a system to operate correctly in presence of faults is known as fault-tolerance, and it becomes a requirement in the design and operation of critical systems. Space vehicles such as satellites or spacecraft also incorporate microprocessors to operate autonomously or semi-autonomously during their service life, with the additional difficulty that they cannot be repaired once in-orbit, so they are considered critical systems. In addition, the harsh conditions in space, and specifically radiation effects, involve a big challenge for the correct operation of electronic devices. In particular, radiation-induced soft errors have the potential to become one of the major risks for the reliability of systems in space. Large space missions, typically publicly funded as in the case of NASA or European Space Agency (ESA), have followed historically the requirement to avoid the risk at any expense, regardless of any cost or schedule restriction. Because of that, the selection of radiation-resistant components (known as rad-hard) specifically designed to be used in space has been the dominant methodology in the paradigm of traditional space industry, also known as “Old Space”. However, rad-hard components have commonly a much higher associated cost and much lower performance that other equivalent COTS devices. In fact, COTS components have already been used successfully by NASA and ESA in missions that requested such high performance that could not be satisfied by any available rad-hard component. In the recent years, the access to space is being facilitated in part due to the irruption of private companies in the space industry. Such companies do not always seek to avoid the risk at any cost, but they must pursue profitability, so they perform a trade-off between risk, cost, and schedule through risk management in a paradigm known as “New Space”. Private companies are often interested in deliver space-based services with the maximum performance and maximum benefit as possible. With such objective, rad-hard components are less attractive than COTS due to their higher cost and lower performance. However, COTS components have not been specifically designed to be used in space and typically they do not include specific techniques to avoid or mitigate the radiation effects in their operation. COTS components are commercialized “as is”, so it is not possible to modify them to improve their susceptibility to radiation effects. Moreover, the high levels of integration of complex, high-performance SoC devices hinder their observability and the application of fault-tolerance techniques. This problem is especially relevant in the case of microprocessors. Thus, there is a growing interest in the development of techniques allowing to understand and improve the behavior of COTS microprocessors under radiation without modifying their architecture and without interfering with their operation. Such techniques may facilitate the use of COTS components in space and maximize the performance of present and future space missions. In this Thesis, novel techniques have been developed to detect, diagnose, and mitigate radiation-induced errors in COTS microprocessors and SoCs using the trace interface as an observation point. The trace interface is a resource commonly found in modern microprocessors, mainly intended to support software development and debugging activities during the design phase. However, it is commonly left unused during the operational phase of the system, so it can be reused with no cost. The trace interface constitutes a feasible connection point to observe microprocessor behavior in a non-intrusive manner and without disturbing processor operation. As a result of this Thesis, an IP module has been developed capable to gather and decode the trace information of a modern, high-end, COTS microprocessor. The IP is highly configurable and customizable to support different applications and processor types. The IP has been designed and validated using the Xilinx Zynq-7000 device as a development platform, which is an interesting COTS device for the space industry. This device features a dual-core ARM Cortex-A9 processor, which is a good representative of modern, high-end, hard-core microprocessors. The resulting IP is compatible with the ARM CoreSight technology, which enables access to trace information in ARM microprocessors. The IP is able to detect errors in the execution flow of the microprocessor and in the application data using trace information, in real time and with very low latency. The IP has been validated in fault injection campaigns and also under proton and neutron irradiation campaigns in specialized facilities. It has also been combined with other fault-tolerance techniques to build hybrid error mitigation approaches. Experimental results demonstrate its high detection capabilities and high potential for the diagnosis of radiation-induced errors. The result of this Thesis, developed in the framework of an Industrial Ph.D. between the University Carlos III of Madrid (UC3M) and the company Arquimea, has been successfully transferred to the company business as a project sponsored by European Space Agency to continue its development and subsequent commercialization.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidenta: María Luisa López Vallejo.- Secretario: Enrique San Millán Heredia.- Vocal: Luigi Di Lill

    Diseño CMOS de un sistema de visión “on-chip” para aplicaciones de muy alta velocidad

    Get PDF
    Falta palabras claveEsta Tesis presenta arquitecturas, circuitos y chips para el diseño de sensores de visión CMOS con procesamiento paralelo embebido. La Tesis reporta dos chips, en concreto: El chip Q-Eye; El chip Eye-RIS_VSoC.. Y dos sistemas de visión construidos con estos chips y otros sistemas “off-chip” adicionales, como FPGAs, en concreto: El sistema Eye-RIS_v1; El sistema Eye-RIS_v2. Estos chips y sistemas están concebidos para ejecutar tareas de visión a muy alta velocidad y con consumos de potencia moderados. Los sistemas resultantes son, además, compactos y por lo tanto ventajosos en términos del factor SWaP cuando se los compara con arquitecturas convencionales formadas por sensores de imágenes convencionales seguidos de procesadores digitales. La clave de estas ventajas en términos de SWaP y velocidad radica en el uso de sensores-procesadores, en lugar de meros sensores, en la interface de los sistemas de visión. Estos sensores-procesadores embeben procesadores programables de señal-mixta dentro del pixel y son capaces tanto de adquirir imágenes como de pre-procesarlas para extraer características, eliminar información redundante y reducir el número de datos que se transmiten fuera del sensor para su procesamiento ulterior. El núcleo de la tesis es el sensor-procesador Q-Eye, que se usa como interface en los sistemas Eye-RIS. Este sensor-procesador embebe una arquitectura de procesamiento formada por procesadores de señal-mixta distribuidos por pixel. Sus píxeles son por tanto estructuras multi-funcionales complejas. De hecho, son programables, incorporan memorias e interactúan con sus vecinos para realizar una variedad de operaciones, tales como: Convoluciones lineales con máscaras programables; Difusiones controladas por tiempo y nivel de señal, a través de un “grid” resistivo embebido en el plano focal; Aritmética de imágenes; Flujo de programación dependiente de la señal; Conversión entre los dominios de datos: imagen en escala de grises e imagen binaria; Operaciones lógicas en imágenes binarias; Operaciones morfológicas en imágenes binarias. etc. Con respecto a otros píxeles multi-función y sensores-procesadores anteriores, el Q-Eye reporta entre otras las siguientes ventajas: Mayor calidad de la imagen y mejores prestaciones de las funcionalidades embebidas en el chip; Mayor velocidad de operación y mejor gestión de la energía disponible; Mayor versatilidad para integración en sistemas de visión industrial. De hecho, los sistemas Eye-RIS son los primeros sistemas de visión industriales dotados de las siguientes características: Procesamiento paralelo distribuido y progresivo; Procesadores de señal-mixta fiables, robustos y con errores controlados; Programabilidad distribuida. La Tesis incluye descripciones detalladas de la arquitectura y los circuitos usados en el pixel del Q-Eye, del propio chip Q-Eye y de los sistemas de visión construidos en base a este chip. Se incluyen también ejemplos de los distintos chips en operaciónThis Thesis presents architectures, circuits and chips for the implementation of CMOS VISION SENSORS with embedded parallel processing. The Thesis reports two chips, namely: Q-eye chip; Eye-RIS_VSoC chip, and two vision systems realized by using these chips and some additional “off-chip” circuitry, such as FPGAs. These vision systems are: Eye-RIS_v1 system; Eye-RIS_v2 system. The chips and systems reported in the Thesis are conceived to perform vision tasks at very high speed and with moderate power consumption. The proposed vision systems are also compact and advantageous in terms of SWaP factors as compared with conventional architectures consisting of standard image sensor followed by digital processors. The key of these advantages in terms of SWaP and speed lies in the use of sensors-processors, rather than mere sensors, in the front-end interface of vision systems. These sensors-processors embed mixed-signal programmable processors inside the pixel. Therefore, they are able to acquire images and process them to extract the features, removing the redundant information and reducing the data throughput for later processing. The core of the Thesis is the sensor-processor Q-Eye, which is used as front-end in the Eye-RIS systems. This sensor-processor embeds a processing architecture composed by mixed-signal processors distributed per pixel. Then, its pixels are complex multi-functional structures. In fact, they are programmable, incorporate memories and interact with its neighbors in order to carry out a set of operations, including: Linear convolutions with programmable linear masks; Time- and signal-controlled diffusions (by means of an embedded resistive grid); Image arithmetic; Signal-dependent data scheduling; Gray-scale to binary transformation; Logic operation on binary images; Mathematical morphology on binary images, etc. As compared with previous multi-function pixels and sensors-processors, the Q-Eye brings among other the following advantages: Higher image quality and better performances of functionalities embedded on chip; Higher operation speed and better management of energy budget; More versatility for integration in industrial vision systems. In fact, the Eye-RIS systems are the first industrial vision systems equipped with the following characteristics: Parallel distributed and progressive processing; Reliable, robust mixed-signal processors with handled errors; Distributed programmability. This Thesis includes detailed descriptions of architecture and circuits used in the Q-Eye pixel, in the Q-Eye chip itself and in the vision systems developed based on this chip. Also, several examples of chips and systems in operation are presented

    Towards an embedded board-level tester: study of a configurable test processor

    Get PDF
    The demand for electronic systems with more features, higher performance, and less power consumption increases continuously. This is a real challenge for design and test engineers because they have to deal with electronic systems with ever-increasing complexity maintaining production and test costs low and meeting critical time to market deadlines. For a test engineer working at the board-level, this means that manufacturing defects must be detected as soon as possible and at a low cost. However, the use of classical test techniques for testing modern printed circuit boards is not sufficient, and in the worst case these techniques cannot be used at all. This is mainly due to modern packaging technologies, a high device density, and high operation frequencies of modern printed circuit boards. This leads to very long test times, low fault coverage, and high test costs. This dissertation addresses these issues and proposes an FPGA-based test approach for printed circuit boards. The concept is based on a configurable test processor that is temporarily implemented in the on-board FPGA and provides the corresponding mechanisms to communicate to external test equipment and co-processors implemented in the FPGA. This embedded test approach provides the flexibility to implement test functions either in the external test equipment or in the FPGA. In this manner, tests are executed at-speed increasing the fault coverage, test times are reduced, and the test system can be adapted automatically to the properties of the FPGA and devices located on the board. An essential part of the FPGA-based test approach deals with the development of a test processor. In this dissertation the required properties of the processor are discussed, and it is shown that the adaptation to the specific test scenario plays a very important role for the optimization. For this purpose, the test processor is equipped with configuration parameters at the instruction set architecture and microarchitecture level. Additionally, an automatic generation process for the test system and for the computation of some of the processor’s configuration parameters is proposed. The automatic generation process uses as input a model known as the device under test model (DUT-M). In order to evaluate the entire FPGA-based test approach and the viability of a processor for testing printed circuit boards, the developed test system is used to test interconnections to two different devices: a static random memory (SRAM) and a liquid crystal display (LCD). Experiments were conducted in order to determine the resource utilization of the processor and FPGA-based test system and to measure test time when different test functions are implemented in the external test equipment or the FPGA. It has been shown that the introduced approach is suitable to test printed circuit boards and that the test processor represents a realistic alternative for testing at board-level.Der Bedarf an elektronischen Systemen mit zusätzlichen Merkmalen, höherer Leistung und geringerem Energieverbrauch nimmt ständig zu. Dies stellt eine erhebliche Herausforderung für Entwicklungs- und Testingenieure dar, weil sie sich mit elektronischen Systemen mit einer steigenden Komplexität zu befassen haben. Außerdem müssen die Herstellungs- und Testkosten gering bleiben und die Produkteinführungsfristen so kurz wie möglich gehalten werden. Daraus folgt, dass ein Testingenieur, der auf Leiterplatten-Ebene arbeitet, die Herstellungsfehler so früh wie möglich entdecken und dabei möglichst niedrige Kosten verursachen soll. Allerdings sind die klassischen Testmethoden nicht in der Lage, die Anforderungen von modernen Leiterplatten zu erfüllen und im schlimmsten Fall können diese Testmethoden überhaupt nicht verwendet werden. Dies liegt vor allem an modernen Gehäuse-Technologien, der hohen Bauteildichte und den hohen Arbeitsfrequenzen von modernen Leiterplatten. Das führt zu sehr langen Testzeiten, geringer Testabdeckung und hohen Testkosten. Die Dissertation greift diese Problematik auf und liefert einen FPGA-basierten Testansatz für Leiterplatten. Das Konzept beruht auf einem konfigurierbaren Testprozessor, welcher im On-Board-FPGA temporär implementiert wird und die entsprechenden Mechanismen für die Kommunikation mit der externen Testeinrichtung und Co-Prozessoren im FPGA bereitstellt. Dadurch ist es möglich Testfunktionen flexibel entweder auf der externen Testeinrichtung oder auf dem FPGA zu implementieren. Auf diese Weise werden Tests at-speed ausgeführt, um die Testabdeckung zu erhöhen. Außerdem wird die Testzeit verkürzt und das Testsystem automatisch an die Eigenschaften des FPGAs und anderer Bauteile auf der Leiterplatte angepasst. Ein wesentlicher Teil des FPGA-basierten Testansatzes umfasst die Entwicklung eines Testprozessors. In dieser Dissertation wird über die benötigten Eigenschaften des Prozessors diskutiert und es wird gezeigt, dass die Anpassung des Prozessors an den spezifischen Testfall von großer Bedeutung für die Optimierung ist. Zu diesem Zweck wird der Prozessor mit Konfigurationsparametern auf der Befehlssatzarchitektur-Ebene und Mikroarchitektur-Ebene ausgerüstet. Außerdem wird ein automatischer Generierungsprozess für die Realisierung des Testsystems und für die Berechnung einer Untergruppe von Konfigurationsparametern des Prozessors vorgestellt. Der automatische Generierungsprozess benutzt als Eingangsinformation ein Modell des Prüflings (device under test model, DUT-M). Das entwickelte Testsystem wurde zum Testen von Leiterplatten für Verbindungen zwischen dem FPGA und zwei Bauteilen verwendet, um den FPGA-basierten Testansatz und die Durchführbarkeit des Testprozessors für das Testen auf Leiterplatte-Ebene zu evaluieren. Die zwei Bauteile sind ein Speicher mit direktem Zugriff (static random-access memory, SRAM) und eine Flüssigkristallanzeige (liquid crystal display, LCD). Die Experimente wurden durchgeführt, um den Ressourcenverbrauch des Prozessors und Testsystems festzustellen und um die Testzeit zu messen. Dies geschah durch die Implementierung von unterschiedlichen Testfunktionen auf der externen Testeinrichtung und dem FPGA. Dadurch konnte gezeigt werden, dass der FPGA-basierte Ansatz für das Testen von Leiterplatten geeignet ist und dass der Testprozessor eine realistische Alternative für das Testen auf Leiterplatten-Ebene ist

    Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations

    Get PDF
    Over the years, there has been significant interest in defining a hardware abstraction layer to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a way to enable application software to specify a waveform, configure the platform, and control digital signal processing (DSP) functions in a hardware platform in a way that insulates it from the details of realization. This thesis presents a tool-based methodolgy for developing and optimizing a Direct Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise (AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter (ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-polar converter. The design methodology is based on a new programming model for FPGAs developed in the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design portability and streamlines system development by enabling engineers to create and validate a system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code generation for programmable devices, designs can be easily verified through hardware-in-the-loop (HIL) simulations. HIL provides a significant increase in simulation speed which allows optimization of the receiver design with respect to the datapath size for different functional parts of the receiver. The parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath size. These parameters are changed in the software enviornment and tested for bit error rate (BER) performance through real-time hardware simualtions. The final result presents a system design with minimum harware area occupancy relative to an acceptable BER degradation
    corecore