227 research outputs found

    Mitigating Both Covariate and Conditional Shift for Domain Generalization

    Full text link
    Domain generalization (DG) aims to learn a model on several source domains, hoping that the model can generalize well to unseen target domains. The distribution shift between domains contains the covariate shift and conditional shift, both of which the model must be able to handle for better generalizability. In this paper, a novel DG method is proposed to deal with the distribution shift via Visual Alignment and Uncertainty-guided belief Ensemble (VAUE). Specifically, for the covariate shift, a visual alignment module is designed to align the distribution of image style to a common empirical Gaussian distribution so that the covariate shift can be eliminated in the visual space. For the conditional shift, we adopt an uncertainty-guided belief ensemble strategy based on the subjective logic and Dempster-Shafer theory. The conditional distribution given a test sample is estimated by the dynamic combination of that of source domains. Comprehensive experiments are conducted to demonstrate the superior performance of the proposed method on four widely used datasets, i.e., Office-Home, VLCS, TerraIncognita, and PACS

    Design, Fabrication, and Characterization of Conjugated Polymeric Electrochemical Memristors as Neuromorphic/Integrated Circuits

    Get PDF
    Organic materials are promising candidates for future electronic devices compared to the complementing inorganic materials due to their ease of processability, use, and disposal, low cost of fabrication, energy efficiency, and flexible nature toward implementation as flexible and non-conformal devices.With that in mind, electrochemical materials have been widely demonstrated with commercial use as sensors, displays, and a variety of other electronic devices. As Moore\u27s law predicts the increase in the density of transistors on a chip, the requirement to create either smaller transistors or the replacement of the transistor device entirely is apparent. Memory resistors, coined ``memristor , are variable resistive tuning devices that are capable of information processing and data storage in one device. This work focuses on the embodiment of a non-volatile conjugated polymeric electrochemical memristor. Three-terminal memristive systems are fabricated and studied using various electrochemicals (a self-doped PEDOT derivative, a polypyrrole, and a dithienopyrrole derivative) and are tested for their electronic properties and biomimicking capabilities. Optical absorbance properties are studied in order to verify the electrochemical material\u27s redox tuning potential for their respective oxidized and reduced chemical forms. The three-terminal device employed a post-synaptic ``read\u27\u27 channel where conductivity of the electrochemical material was equated to synaptic weight and was electronically decoupled from the pre-synaptic programming electrode by means of a polymeric gel electrolyte. Basic electronic characteristics are exhibited for these three devices such as state stability and retention, non-volatile voltage-driven conductivity tuning, input parameter characteristic trends, and power consumption per input program. Biological synapses consume, on the order of, 1 - 100 fJ of energy per synaptic energy. The electrochemical materials used in this study, at their most optimized input parameters, were capable of demonstrating a 4.16 fJ/mm2 power consumption per input pulse and lead to a promising candidate for implementation as future artificial neural networks. Biological mimicry was displayed for these devices in the form of paired-pulse facilitation and paired-pulse depression, both a form of short term memory which observes the effect the timescale between two incoming inputs has on the change in the final output signal. Toward the indication for the replacement of transistors with three-terminal memristors, basic circuit operations are achieved and demonstrated for these devices. These operations include both Boolean and elementary algebra, key features that demonstrate data processing and storage in-memory where the physical states of the conjugated polymer film represent either logical statements or arithmetic counting variables. The Boolean algebra demonstrated the use of a single memristive device equal to a variety of single logic gates (AND, NAND, OR and NOR) where, by wiring several devices in series, more advanced combinational logic gates can be achieved. Furthermore, each device was capable of displaying elementary algebra for the basic arithmetic functions of addition, subtraction, multiplication, and division. In regards to thin film deposition techniques, the self-doped PEDOT device employed roll-to-roll gravure printing, a high speed and high resolution commercially used deposition technique. The polypyrrole device was fabricated implementing an in-situ polymerization technique, referred to as vapor phase polymerization, and demonstrated the use of this technique toward non-conformal devices. The dithienopyrrole derivative was polymerized through the same vapor phase polymerization technique as the polypyrrole and used in tandem with screen printing in order to construct the final device, including the oxidant film, the silver electrodes, and the polymeric gel electrolyte

    Towards a framework for innovation orientation within business and management studies:: a systematic review and paths for future research

    Get PDF
    Purpose: The innovation orientation theory has emerged within the literature in the last 40 years particular within the development of other strategic orientations, but the bulk of seminal literature in the area has been developed in the past 11 years. The purpose of this paper is to revisit the concept innovation orientation in the light of recent research. Design/methodology/approach: This paper presents a systematic review of this literature, covering 74 scholarly articles published between 1982 and 2017. Findings: Innovation orientation is a sub-construct positioned within the wider field of innovation and relates to an innovation-based strategic orientation, where orientation is used to describe the overall dominant approach that represents an organisation’s competitive posture and strategic focus. It is a multifaceted construct that includes a range of core common variables innovation culture, competition-based understanding, organisational flexibility and specific capital and knowledge capabilities and is particular relevant for that managers and executives to understand how to manage innovation at the firm level. Literature also reports links between innovation orientation and organisational performance. Originality/value: On the basis of these analyses, a comprehensive innovation orientation framework is developed including key antecedents and key outcomes in terms of performance enhancement and capabilities development. Suggestions for future research are also presented

    Contents

    Get PDF

    Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases

    Get PDF
    Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.Peer reviewe

    Microfluidic tools for enhanced characterization of therapeutic stem cells and prediction of their potential antimicrobial secretome

    Get PDF
    Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advan-tageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms
    • …
    corecore