2,488 research outputs found

    Computationally Efficient Implementation of Convolution-based Locally Adaptive Binarization Techniques

    Full text link
    One of the most important steps of document image processing is binarization. The computational requirements of locally adaptive binarization techniques make them unsuitable for devices with limited computing facilities. In this paper, we have presented a computationally efficient implementation of convolution based locally adaptive binarization techniques keeping the performance comparable to the original implementation. The computational complexity has been reduced from O(W2N2) to O(WN2) where WxW is the window size and NxN is the image size. Experiments over benchmark datasets show that the computation time has been reduced by 5 to 15 times depending on the window size while memory consumption remains the same with respect to the state-of-the-art algorithmic implementation

    Image Enhancement with Statistical Estimation

    Full text link
    Contrast enhancement is an important area of research for the image analysis. Over the decade, the researcher worked on this domain to develop an efficient and adequate algorithm. The proposed method will enhance the contrast of image using Binarization method with the help of Maximum Likelihood Estimation (MLE). The paper aims to enhance the image contrast of bimodal and multi-modal images. The proposed methodology use to collect mathematical information retrieves from the image. In this paper, we are using binarization method that generates the desired histogram by separating image nodes. It generates the enhanced image using histogram specification with binarization method. The proposed method has showed an improvement in the image contrast enhancement compare with the other image.Comment: 9 pages,6 figures; ISSN:0975-5578 (Online); 0975-5934 (Print

    Automatic Document Image Binarization using Bayesian Optimization

    Full text link
    Document image binarization is often a challenging task due to various forms of degradation. Although there exist several binarization techniques in literature, the binarized image is typically sensitive to control parameter settings of the employed technique. This paper presents an automatic document image binarization algorithm to segment the text from heavily degraded document images. The proposed technique uses a two band-pass filtering approach for background noise removal, and Bayesian optimization for automatic hyperparameter selection for optimal results. The effectiveness of the proposed binarization technique is empirically demonstrated on the Document Image Binarization Competition (DIBCO) and the Handwritten Document Image Binarization Competition (H-DIBCO) datasets

    A Multiple-Expert Binarization Framework for Multispectral Images

    Full text link
    In this work, a multiple-expert binarization framework for multispectral images is proposed. The framework is based on a constrained subspace selection limited to the spectral bands combined with state-of-the-art gray-level binarization methods. The framework uses a binarization wrapper to enhance the performance of the gray-level binarization. Nonlinear preprocessing of the individual spectral bands is used to enhance the textual information. An evolutionary optimizer is considered to obtain the optimal and some suboptimal 3-band subspaces from which an ensemble of experts is then formed. The framework is applied to a ground truth multispectral dataset with promising results. In addition, a generalization to the cross-validation approach is developed that not only evaluates generalizability of the framework, it also provides a practical instance of the selected experts that could be then applied to unseen inputs despite the small size of the given ground truth dataset.Comment: 12 pages, 8 figures, 6 tables. Presented at ICDAR'1

    Unsupervised ensemble of experts (EoE) framework for automatic binarization of document images

    Full text link
    In recent years, a large number of binarization methods have been developed, with varying performance generalization and strength against different benchmarks. In this work, to leverage on these methods, an ensemble of experts (EoE) framework is introduced, to efficiently combine the outputs of various methods. The proposed framework offers a new selection process of the binarization methods, which are actually the experts in the ensemble, by introducing three concepts: confidentness, endorsement and schools of experts. The framework, which is highly objective, is built based on two general principles: (i) consolidation of saturated opinions and (ii) identification of schools of experts. After building the endorsement graph of the ensemble for an input document image based on the confidentness of the experts, the saturated opinions are consolidated, and then the schools of experts are identified by thresholding the consolidated endorsement graph. A variation of the framework, in which no selection is made, is also introduced that combines the outputs of all experts using endorsement-dependent weights. The EoE framework is evaluated on the set of participating methods in the H-DIBCO'12 contest and also on an ensemble generated from various instances of grid-based Sauvola method with promising performance.Comment: 6-page version, Accepted to be presented in ICDAR'1
    • …
    corecore