802 research outputs found

    Data granulation by the principles of uncertainty

    Full text link
    Researches in granular modeling produced a variety of mathematical models, such as intervals, (higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of the uncertainty expressed by the information granule model could be used to define an invariant property, to be exploited in practical situations of information granulation. In this perspective, a procedure of information granulation is effective if the uncertainty conveyed by the synthesized information granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles regardless of the input data type and the specific mathematical setting adopted for the information granules. The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and quantitatively judge over different data granulation procedures. To provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of distances, which is designed to generate type-2 fuzzy sets. We analyze the procedure by performing different experiments on two distinct data types: feature vectors and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2 fuzzy set models.Comment: 16 pages, 9 figures, 52 reference

    Knowledge structure, knowledge granulation and knowledge distance in a knowledge base

    Get PDF
    AbstractOne of the strengths of rough set theory is the fact that an unknown target concept can be approximately characterized by existing knowledge structures in a knowledge base. Knowledge structures in knowledge bases have two categories: complete and incomplete. In this paper, through uniformly expressing these two kinds of knowledge structures, we first address four operators on a knowledge base, which are adequate for generating new knowledge structures through using known knowledge structures. Then, an axiom definition of knowledge granulation in knowledge bases is presented, under which some existing knowledge granulations become its special forms. Finally, we introduce the concept of a knowledge distance for calculating the difference between two knowledge structures in the same knowledge base. Noting that the knowledge distance satisfies the three properties of a distance space on all knowledge structures induced by a given universe. These results will be very helpful for knowledge discovery from knowledge bases and significant for establishing a framework of granular computing in knowledge bases

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference

    Two New Types of Multiple Granulation Rough Set

    Get PDF

    A Distance-Based Method for Attribute Reduction in Incomplete Decision Systems

    Get PDF
    There are limitations in recent research undertaken on attribute reduction in incomplete decision systems. In this paper, we propose a distance-based method for attribute reduction in an incomplete decision system. In addition, we prove theoretically that our method is more effective than some other methods

    A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing

    Get PDF
    One of the most important steps in earthquake disaster management is the prediction of probable damages which is called earthquake vulnerability assessment. Earthquake vulnerability assessment is a multicriteria problem and a number of multi-criteria decision making models have been proposed for the problem. Two main sources of uncertainty including uncertainty associated with experts‘ point of views and the one associated with attribute values exist in the earthquake vulnerability assessment problem. If the uncertainty in these two sources is not handled properly the resulted seismic vulnerability map will be unreliable. The main objective of this research is to propose a reliable model for earthquake vulnerability assessment which is able to manage the uncertainty associated with the experts‘ opinions. Granular Computing (GrC) is able to extract a set of if-then rules with minimum incompatibility from an information table. An integration of Dempster-Shafer Theory (DST) and GrC is applied in the current research to minimize the entropy in experts‘ opinions. The accuracy of the model based on the integration of the DST and GrC is 83%, while the accuracy of the single-expert model is 62% which indicates the importance of uncertainty management in seismic vulnerability assessment problem. Due to limited accessibility to current data, only six criteria are used in this model. However, the model is able to take into account both qualitative and quantitative criteria

    Preprocessing and Feature Selection on Group Structure Analysis using Entropy and Thresholding

    Get PDF
    Many real data increase dynamically in size. We have been observing in many fields that data grow with time in size. This has led to the development of several new analytic techniques. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy.When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient
    corecore