19 research outputs found

    Combinable Extensions of Abelian Groups

    Get PDF
    The design of decision procedures for combinations of theories sharing some arithmetic fragment is a challenging problem in verification. One possible solution is to apply a combination method Ă  la Nelson-Oppen, like the one developed by Ghilardi for unions of non-disjoint theories. We show how to apply this non-disjoint combination method with the theory of abelian groups as shared theory. We consider the completeness and the effectiveness of this non-disjoint combination method. For the completeness, we show that the theory of abelian groups can be embedded into a theory admitting quantifier elimination. For achieving effectiveness, we rely on a superposition calculus modulo abelian groups that is shown complete for theories of practical interest in verification

    Automatic Decidability for Theories with Counting Operators

    Get PDF
    International audienceThe notion of schematic paramodulation has been introduced to reason on properties of (standard) paramodulation. We present a schematic paramodulation calculus modulo a fragment of arithmetics, namely the theory of Integer Offsets. This new schematic calculus is used to prove the decidability of the satisfiability problem for some theories equipped with counting operators. We illustrate our theoretical contribution on theories representing extensions of classical data structures, e.g., lists and records

    Politeness and Combination Methods for Theories with Bridging Functions

    Get PDF
    International audienceThe Nelson-Oppen combination method is ubiquitous in Satisfiability Modulo Theories solvers. However, one of its major drawbacks is to be restricted to disjoint unions of theories. We investigate the problem of extending this combination method to particular non-disjoint unions of theories defined by connecting disjoint theories via bridging functions. A possible application is to solve verification problems expressed in a combination of data structures connected to arithmetic with bridging functions such as the length of lists and the size of trees. We present a sound and complete combination method Ă  la Nelson-Oppen for the theory of absolutely free data structures, including lists and trees. This combination procedure is then refined for standard interpretations. The resulting theory has a nice politeness property, enabling combinations with arbitrary decidable theories of elements. In addition, we have identified a class of polite data structure theories for which the combination method remains sound and complete. This class includes all the subtheories of absolutely free data structures (e.g, the empty theory, injectivity, projection). Again, the politeness property holds for any theory in this class, which can thus be combined with bridging functions and arbitrary decidable theories of elements. This illustrates the significance of politeness in the context of non-disjoint combinations of theories

    Automatic Decidability for Theories Modulo Integer Offsets

    Get PDF
    Many verification problems can be reduced to a satisfiability problem modulo theories. For building satisfiability procedures the rewriting-based approach uses a general calculus for equational reasoning named superposition. Schematic superposition, in turn, provides a mean to reason on the derivations computed by superposition. Until now, schematic superposition was only studied for standard superposition. We present a schematic superposition calculus modulo a fragment of arithmetics, namely the theory of Integer Offsets. This new schematic calculus is used to prove the decidability of the satisfiability problem for some theories extending Integer Offsets. We illustrate our theoretical contribution on theories representing extensions of classical data structures, e.g., lists and records. An implementation in the rewriting-based Maude system constitutes a practical contribution. It enables automatic decidability proofs for theories of practical use

    Data Structures with Arithmetic Constraints: a Non-Disjoint Combination

    Get PDF
    We apply an extension of the Nelson-Oppen combination method to develop a decision procedure for the non-disjoint union of theories modeling data structures with a counting operator and fragments of arithmetic. We present some data structures and some fragments of arithmetic for which the combination method is complete and effective. To achieve effectiveness, the combination method relies on particular procedures to compute sets that are representative of all the consequences over the shared theory. We show how to compute these sets by using a superposition calculus for the theories of the considered data structures and various solving and reduction techniques for the fragments of arithmetic we are interested in, including Gauss elimination, Fourier-Motzkin elimination and Groebner bases computation

    Data Structures with Arithmetic Constraints: a Non-disjoint Combination

    Get PDF
    version courte de inria-00397080 (INRIA RR-6963)International audienceWe apply an extension of the Nelson-Oppen combination method to develop a decision procedure for the non-disjoint union of theories modeling data structures with a counting operator and fragments of arithmetic. We present some data structures and some fragments of arithmetic for which the combination method is complete and effective. To achieve effectiveness, the combination method relies on particular procedures to compute sets that are representative of all the consequences over the shared theory. We show how to compute these sets by using a superposition calculus for the theories of the considered data structures and various solving and reduction techniques for the fragments of arithmetic we are interested in, including Gauss elimination, Fourier-Motzkin elimination and Groebner bases computation

    Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report

    Full text link
    This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200 page
    corecore