2 research outputs found

    Cross-layer Assisted TCP Algorithms for Vertical Handoff

    Get PDF
    The ever expanding growth of the wireless access to the Internet in recent years has led to the proliferation of wireless and mobile devices to connect to the Internet. This has created the possibility of mobile devices equipped with multiple radio interfaces to connect to the Internet using any of several wireless access network technologies such as GPRS, WLAN and WiMAX in order to get the connectivity best suited for the application. These access networks are highly heterogeneous and they vary widely in their characteristics such as bandwidth, propagation delay and geographical coverage. The mechanism by which a mobile device switches between these access networks during an ongoing connection is referred to as vertical handoff and it often results in an abrupt and significant change in the access link characteristics. The most common Internet applications such as Web browsing and e-mail make use of the Transmission Control Protocol (TCP) as their transport protocol and the behaviour of TCP depends on the end-to-end path characteristics such as bandwidth and round-trip time (RTT). As the wireless access link is most likely the bottleneck of a TCP end-to-end path, the abrupt changes in the link characteristics due to a vertical handoff may affect TCP behaviour adversely degrading the performance of the application. The focus of this thesis is to study the effect of a vertical handoff on TCP behaviour and to propose algorithms that improve the handoff behaviour of TCP using cross-layer information about the changes in the access link characteristics. We begin this study by identifying the various problems of TCP due to a vertical handoff based on extensive simulation experiments. We use this study as a basis to develop cross-layer assisted TCP algorithms in handoff scenarios involving GPRS and WLAN access networks. We then extend the scope of the study by developing cross-layer assisted TCP algorithms in a broader context applicable to a wide range of bandwidth and delay changes during a handoff. And finally, the algorithms developed here are shown to be easily extendable to the multiple-TCP flow scenario. We evaluate the proposed algorithms by comparison with standard TCP (TCP SACK) and show that the proposed algorithms are effective in improving TCP behavior in vertical handoff involving a wide range of bandwidth and delay of the access networks. Our algorithms are easy to implement in real systems and they involve modifications to the TCP sender algorithm only. The proposed algorithms are conservative in nature and they do not adversely affect the performance of TCP in the absence of cross-layer information.Käytämme enenevissä määrin kannettavia päätelaitteita (esim. matkapuhelin, kannettava tietokone) erilaisiin sovelluksiin kuten sähköpostin lukemiseen, verkon selaamiseen, musiikin lataamiseen ja kuuntelemiseen, pelien pelaamiseen ja laskujen maksamiseen riippumatta olinpaikastamme tai liikkuvuudestamme. Pystymme yhdistämään laitteemme Internetiin milloin tahansa missä tahansa. Langattomat verkot, jotka mahdollistavat laitteen kytkemisen Internetiin radion kautta käyttävät moninaisia teknologioita ja eroavat laajalti ominaisuuksiltaan. Esimerkiksi langaton lähiverkko (WLAN), jota voidaan käyttää rakennuksen sisällä, on matkapuhelinverkkoa (esim. GPRS) nopeampi verkko, kun taas GPRS-kenttä voi ulottua kokonaisen kaupungin tai maan alueelle ja laajemmallekin. Kannettava päätelaite, jossa on monia radioliittymiä, voi siirtyä käyttämään mitä tahansa monista saatavilla olevistaverkoista riippuen olinpaikasta tai käytettävän sovelluksen tarpeista. Verkonvaihto viittaa tähän verkosta toiseen siirtymiseen, ja se tunnetaan vertikaalisena verkonvaihtona, kun siirtymisen kohteena olevien verkkojen teknologia eroaa toisistaan. TCP on tietoliikenneohjelmisto, jota sekä tiedon lähettäjä että vastaanottaja käyttävät kuljettamaan sovelluksen tiedon luotettavasti. TCP säätelee tiedon lähetysnopeutta riippuen Internetin resurssien saatavuudesta. TCP:n käyttäytyminen riippuu päästä-päähän polun ominaisuuksista ja erityisesti pullonkaulayhteydestä, siitä yhteydestä, jolla on minimikapasiteetti polulla. Langaton yhteys, joka yhdistää kannettavan laitteen Internetiin on usein pullonkaulayhteys, ja äkillinen muutos sen ominaisuuksissa vertikaalisen siirtymän aikana vaikuttaa merkittävästi TCP:n suorituskykyyn ja siten koko sovelluksen laatuun. Tämä työssä on keskitytty tutkimaan TCP:n toimintaa vertikaalisessa verkonvaihdon yhteydessä ja suunnittelemaan algoritmeja, jotka parantavat sen suorituskykyä vertikaalisen verkonvaihdon yhteydessä. Suunnitellut algoritmit käyttävät hyväksi tietoa vertikaaliseen verkonvaihtoon liittyvien langattomien yhteyksien ominaisuuksista. Ensimmäinen tapaustutkimuskohde liittyy WLAN-GPRS -ympäristöön, jossa TCP saa minimimäärän tietoa verkonvaihtoon liittyen. Tulokset näyttävät, että TCP:n suorituskykyä voidaan parantaa huomattavasti. Tutkimusta on laajennettu kattamaan verkonvaihto yleisemmässä tapauksessa käyttäen karkeita arvioita ko. verkkojen ominaisuuksista. Kehitettyjen algoritmien toiminnallisuus on evaluoitu simulaatiokokeilla kattaen laajan joukon ominaisuuksiltaan erilaisia verkkoja. Tulokset osoittavat, että TCP-suorituskykyä voidaan parantaa vertikaalisen verkonvaihdon yhteydessä huomattavasti tätä lähestymistapaa käyttäen. Kehitetyt algoritmit voivat olla hyödyksi etsiessämme ratkaisuja kannettavien laitteiden todellisen käytön tarpeisiin
    corecore