60 research outputs found

    Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury

    Get PDF
    Most traumatic brain injuries (TBIs) during military deployment or training are clinically “mild” and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation

    Dementia in military and veteran populations: a review of risk factors—traumatic brain injury, post-traumatic stress disorder, deployment, and sleep

    Get PDF
    The military population face a unique set of risk factors that may increase the risk of being diagnosed with dementia. Traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) have a higher prevalence in this group in comparison to the civilian population. By delving into the individual relationships between TBI and dementia, and PTSD and dementia, we are able to better explore dementia in the military and veteran populations. While there are some inconsistencies in results, the TBI-dementia association has become more widely accepted. Moderate-to-severe TBI has been found to increase the risk of being diagnosed with Alzheimer’s disease. A correlation between PTSD and dementia has been established, however, whether or not it is a causal relationship remains unclear. Factors such as blast, combat and chemical exposure may occur during a deployment, along with TBI and/or PTSD diagnosis, and can impact the risk of dementia. However, there is a lack of literature exploring the direct effects of deployment on dementia risk. Sleep problems have been observed to occur in those following TBI, PTSD and deployment. Poor sleep has been associated with possible dementia risk. Although limited studies have focused on the link between sleep and dementia in military and veteran populations, sleep is a valuable factor to study due to its association and interconnection with other military/veteran factors. This review aims to inform of various risk factors to the cognitive health of military members and veterans: TBI, PTSD, deployment, and sleep

    Neurosci Biobehav Rev

    Get PDF
    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid \uce\ub2 plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.CC999999/Intramural CDC HHS/United States2016-01-21T00:00:00Z25956251PMC472125

    Peripheral Biomarkers of Inflammation Following Blast Exposure in a Clinical Population

    Get PDF
    Concussions resulting from blast exposures represent a significant source of injury among military service members and the civilian population. Overall, traumatic brain injuries (TBIs) are a significant cause of hospitalization, disability, long-term care, and mortality across all age groups in the United States. Blast induced traumatic brain injury (biTBI) is an increasingly recognized subtype of brain injury, especially among military personnel. Blast exposure may influence a number of neurological processes, such as the inflammatory response, representing a unique biological profile. Outcomes from a TBI vary, even in similar injuries, and biomarkers including proteins and gene expression are increasingly studied to determine potential underlying mechanisms of injury and recovery processes. Biomarkers may yield insight into differential biological pathways in the various severities and subtypes of brain injury. This novel study proposes the examination of clinical and demographic characteristics and the identification of possible biological mechanisms through gene expression and protein analysis following brain injury. This study will be the first to examine gene expression related to inflammatory activation using sequencing and other unique methods to gain insight into immune pathways following blast exposure in clinical populations during the acute and subacute stages of injury. A deeper understanding of the role of inflammatory activation profiles will help direct future research in blast exposure and improve outcomes for individuals affected by this injury

    Recovery of Sensorimotor Function in Rats Following Acute Rapid Eye Movement Sleep Deprivation and Controlled Cortical Impact

    Get PDF
    Traumatic brain injury (TBI) resulting from bomb blasts and explosions is common among military personnel. The effects of Rapid Eye Movement (REM) sleep deprivation on the sensorimotor behavior and physiological mechanisms related to TBI are unknown. Thirty-two Long Evans rats were randomly assigned to REM sleep deprivation (RSD) with controlled cortical impact (CCI), social isolation (SI) with CCI, or normal housing (NH) with CCI or Sham. Two behavioral tasks [beam walk and bilateral tactile adhesive removal somatosensory (BTARS)] testing motor and sensory function were used to investigate recovery of function. Brain tissue was analyzed using Cresyl Violet stain (cell bodies), GFAP (astrocytes) and Fluoro Jade-B (dying cells) labeling. Results indicated that 24 hour RSD immediately prior to CCI impaired recovery of sensorimotor function when tested on the adhesive removal task. Recovery of sensorimotor function as a result of 24 hour RSD immediately prior to CCI was not significantly impaired when tested on the balance beam walk task. Results also indicated that sleep deprivation seemed to intensify inflammation, lesion size and neuron loss when compared to non sleep deprived animal

    Developing neuroimaging biomarkers of blast-induced traumatic brain injury

    Get PDF
    In the past two decades, the awareness of the physical and emotional effects and sequalae of traumatic brain injuries (TBI) has grown considerably, especially in the case of soldiers returning from their deployment in Iraq and Afghanistan, after sustaining blast-induced TBI (bTBI). While the understanding of bTBI and how it compares to civilian non-blast TBI is essential for proper prevention, diagnosis and treatment, it is currently limited, especially in human in-vivo studies. Developing neuroimaging biomarkers of bTBI is key in understanding primary blast injury mechanism. I therefore investigated the patterns of white matter and grey matter injuries that are specific to bTBI and aren¶t commonl\ seen in civilians Zho suffered from head trauma using advanced neuroimaging techniques. However, because of significant methodological issues and limitations, I developed and tested a new pipeline capable of running the analysis of white matter abnormalities in soldiers, called subject-specific diffusion segmentation (SSDS). I also used standard methodologies to investigate changes at the level of the grey matter structures, and more particularly the limbic system. Finally, I trained a machine learning algorithm that builds decision trees with the aim of classifying between patients with TBI and controls, and between different TBI mechanisms as an example of what could potentially be applied in the context of bTBI. I found three main neuroimaging biomarkers specific to bTBI. The first one is a microstructural white matter abnormality at the level of the middle cerebellar peduncle, characterized by a decrease of diffusivity measures. The second is also a decrease in diffusivity properties, at the level of the white matter boundary, and the third one is a loss of hippocampal volume, with no association to post-traumatic stress disorder. Finally, I demonstrated that SSDS can be used in tandem with a machine learning algorithm for potential diagnosis of TBI with high accuracy. These findings provide mechanistic insights into bTBI and the effect of primary blast injuries on the human brain. This work also identifies important neuroimaging biomarkers that might facilitate prevention and diagnosis in soldiers who suffered from bTBI.Open Acces

    Effects of Diversity and Neuropsychological Performance in an NFL Cohort

    Get PDF
    Objective: The aim of this study was to examine the effect of ethnicity on neuropsychological test performance by comparing scores of white and black former NFL athletes on each subtest of the WMS. Participants and Methods: Data was derived from a de-identified database in South Florida consisting of 63 former NFL white (n=28, 44.4%) and black (n=35, 55.6%) athletes (Mage= 50.38; SD= 11.57). Participants completed the following subtests of the WMS: Logical Memory I and II, Verbal Paired Associates I and II, and Visual Reproduction I and II. Results: A One-Way ANOVA yielded significant effect between ethnicity and performance on several subtests from the WMS-IV. Black athletes had significantly lower scores compared to white athletes on Logical Memory II: F(1,61) = 4.667, p= .035, Verbal Paired Associates I: F(1,61) = 4.536, p = .037, Verbal Paired Associates: II F(1,61) = 4.677, p = .034, and Visual Reproduction I: F(1,61) = 6.562, p = .013. Conclusions: Results suggest significant differences exist between white and black athletes on neuropsychological test performance, necessitating the need for proper normative samples for each ethnic group. It is possible the differences found can be explained by the psychometric properties of the assessment and possibility of a non-representative sample for minorities, or simply individual differences. Previous literature has found white individuals to outperform African-Americans on verbal and non-verbal cognitive tasks after controlling for socioeconomic and other demographic variables (Manly & Jacobs, 2002). This highlights the need for future investigators to identify cultural factors and evaluate how ethnicity specifically plays a role on neuropsychological test performance. Notably, differences between ethnic groups can have significant implications when evaluating a sample of former athletes for cognitive impairment, as these results suggest retired NFL minorities may be more impaired compared to retired NFL white athletes

    Distinguishing Performance on Tests of Executive Functions Between Those with Depression and Anxiety

    Get PDF
    Objective: To see if there are differences in executive functions between those diagnosed with Major Depressive Disorder (MDD) and those with Generalized Anxiety Disorder (GAD).Participants and Methods: The data were chosen from a de-identified database at a neuropsychological clinic in South Florida. The sample used was adults diagnosed with MDD (n=75) and GAD (n=71) and who had taken the Halstead Category Test, Trail Making Test, Stroop Test, and the Wisconsin Card Sorting Test. Age (M=32.97, SD=11.75), gender (56.7% female), and race (52.7% White) did not differ between groups. IQ did not differ but education did (MDD=13.41 years, SD=2.45; GAD=15.11 years, SD=2.40), so it was ran as a covariate in the analyses. Six ANCOVAs were run separately with diagnosis being held as the fixed factor and executive function test scores held as dependent variables. Results: The MDD group only performed worse on the Category Test than the GAD group ([1,132]=4.022, p\u3c .05). Even though both WCST scores used were significantly different between the two groups, both analyses failed Levene’s test of Equality of Error Variances, so the data were not interpreted. Conclusions: Due to previous findings that those diagnosed with MDD perform worse on tests of executive function than normal controls (Veiel, 1997), this study wanted to compare executive function performance between those diagnosed with MDD and those with another common psychological disorder. The fact that these two groups only differed on the Category Test shows that there may not be much of a difference in executive function deficits between those with MDD and GAD. That being said, not being able to interpret the scores on the WCST test due to a lack of homogeneity of variance indicates that a larger sample size is needed to compare these two types of patients, as significant differences may be found. The results of this specific study, however, could mean that the Category Test could be used in assisting the diagnosis of a MDD patient
    • …
    corecore