617 research outputs found

    Positioning of High-speed Trains using 5G New Radio Synchronization Signals

    Get PDF
    We study positioning of high-speed trains in 5G new radio (NR) networks by utilizing specific NR synchronization signals. The studies are based on simulations with 3GPP-specified radio channel models including path loss, shadowing and fast fading effects. The considered positioning approach exploits measurement of Time-Of-Arrival (TOA) and Angle-Of-Departure (AOD), which are estimated from beamformed NR synchronization signals. Based on the given measurements and the assumed train movement model, the train position is tracked by using an Extended Kalman Filter (EKF), which is able to handle the non-linear relationship between the TOA and AOD measurements, and the estimated train position parameters. It is shown that in the considered scenario the TOA measurements are able to achieve better accuracy compared to the AOD measurements. However, as shown by the results, the best tracking performance is achieved, when both of the measurements are considered. In this case, a very high, sub-meter, tracking accuracy can be achieved for most (>75%) of the tracking time, thus achieving the positioning accuracy requirements envisioned for the 5G NR. The pursued high-accuracy and high-availability positioning technology is considered to be in a key role in several envisioned HST use cases, such as mission-critical autonomous train systems.Comment: 6 pages, 5 figures, IEEE WCNC 2018 (Wireless Communications and Networking Conference

    Channel Estimation in Multicarrier Communication Systems

    Get PDF
    The data rate and spectrum efficiency of wireless mobile communications have been significantly improved over the last decade or so. Recently, the advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting have been sophisticatedly developed using OFDM and CDMA technology. In general, most mobile communication systems transmit bits of information in the radio space to the receiver. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. To remove ISI from the signal, there is a need of strong equalizer which requires knowledge on the channel impulse response (CIR).This is primarily provided by a separate channel estimator. Usually the channel estimation is based on the known sequence of bits, which is unique for a certain transmitter and which is repeated in every transmission burst. Thus, the channel estimator is able to estimate CIR for each burst separately by exploiting the known transmitted bits and the corresponding received samples. In this thesis we investigate and compare various efficient channel estimation schemes for OFDM systems which can also be extended to MC DS-CDMA systems.The channel estimation can be performed by either inserting pilot tones into all subcarriers of OFDM symbols with a specific period or inserting pilot tones into each OFDM symbol. Two major types of pilot arrangement such as block type and comb type pilot have been focused employing Least Square Error (LSE) and Minimum Mean Square Error (MMSE) channel estimators. Block type pilot sub-carriers is especially suitable for slow-fading radio channels whereas comb type pilots provide better resistance to fast fading channels. Also comb type pilot arrangement is sensitive to frequency selectivity when comparing to block type arrangement. However, there is another supervised technique called Implicit Training (IT) based channel estimation which exploits the first order statistics in the received data, induced by superimposing periodic training sequences with good correlation properties, along with the information symbols. Hence, the need for additional time slots for training the equalizer is avoided. The performance of the estimators is presented in terms of the mean square estimation error (MSEE) and bit error rate (BER)

    Carrier Aggregation Enabled Integrated Sensing and Communication Signal Design and Processing

    Full text link
    The future mobile communication systems will support intelligent applications such as Internet of Vehicles (IoV) and Extended Reality (XR). Integrated Sensing and Communication (ISAC) is regarded as one of the key technologies satisfying the high data rate communication and highly accurate sensing for these intelligent applications in future mobile communication systems. With the explosive growth of wireless devices and services, the shortage of spectrum resources leads to the fragmentation of available frequency bands for ISAC systems, which degrades sensing performance. Facing the above challenges, this paper proposes a Carrier Aggregation (CA)-based ISAC signal aggregating high and low-frequency bands to improve the sensing performance, where the CA-based ISAC signal can use four different aggregated pilot structures for sensing. Then, an ISAC signal processing algorithm with Compressed Sensing (CS) is proposed and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is used to solve the reconfiguration convex optimization problem. Finally, the Cram'er-Rao Lower Bounds (CRLBs) are derived for the CA-based ISAC signal. Simulation results show that CA efficiently improves the accuracy of range and velocity estimation

    High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    Get PDF

    Low Complexity Scalable Iterative Algorithms for IEEE 802.11p Receivers

    Get PDF
    In this paper, we investigate receivers for Vehicular to Vehicular (V2V) and Vehicular to Infrastructure (V2I) communications. Vehicular channels are characterized by multiple paths and time variations, which introduces challenges in the design of receivers. We propose an algorithm for IEEE 802.11p compliant receivers, based on Orthogonal Frequency Division Multiplexing (OFDM). We employ iterative structures in the receiver as a way to estimate the channel despite variations within a frame. The channel estimator is based on factor graphs, which allow the design of soft iterative receivers while keeping an acceptable computational complexity. Throughout this work, we focus on designing a receiver offering a good complexity performance trade-off. Moreover, we propose a scalable algorithm in order to be able to tune the trade-off depending on the channel conditions. Our algorithm allows reliable communications while offering a considerable decrease in computational complexity. In particular, numerical results show the trade-off between complexity and performance measured in computational time and BER as well as FER achieved by various interpolation lengths used by the estimator which both outperform by decades the standard least square solution. Furthermore our adaptive algorithm shows a considerable improvement in terms of computational time and complexity against state of the art and classical receptors whilst showing acceptable BER and FER performance
    corecore