992 research outputs found

    The conic-gearing image of a complex number and a spinor-born surface geometry

    Full text link
    Quaternion (Q-) mathematics formally contains many fragments of physical laws; in particular, the Hamiltonian for the Pauli equation automatically emerges in a space with Q-metric. The eigenfunction method shows that any Q-unit has an interior structure consisting of spinor functions; this helps us to represent any complex number in an orthogonal form associated with a novel geometric image (the conic-gearing picture). Fundamental Q-unit-spinor relations are found, revealing the geometric meaning of spinors as Lam\'e coefficients (dyads) locally coupling the base and tangent surfaces.Comment: 7 pages, 1 figur

    Orthogonality for Quantum Latin Isometry Squares

    Get PDF
    Goyeneche et al recently proposed a notion of orthogonality for quantum Latin squares, and showed that orthogonal quantum Latin squares yield quantum codes. We give a simplified characterization of orthogonality for quantum Latin squares, which we show is equivalent to the existing notion. We use this simplified characterization to give an upper bound for the number of mutually orthogonal quantum Latin squares of a given size, and to give the first examples of orthogonal quantum Latin squares that do not arise from ordinary Latin squares. We then discuss quantum Latin isometry squares, generalizations of quantum Latin squares recently introduced by Benoist and Nechita, and define a new orthogonality property for these objects, showing that it also allows the construction of quantum codes. We give a new characterization of unitary error bases using these structures.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    On the structure tensors of almost contact B-metric manifolds

    Full text link
    The space of the structure (0,3)-tensors of the covariant derivatives of the structure endomorphism and the metric on almost contact B-metric manifolds is considered. A known decomposition of this space in orthogonal and invariant subspaces with respect to the action of the structure group is used. We determine the corresponding components of the structure tensor and consider the case of the lowest dimension 3 of the studied manifolds. Some examples are commented.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1105.5715 by other author

    Adversary Lower Bound for Element Distinctness with Small Range

    Full text link
    The Element Distinctness problem is to decide whether each character of an input string is unique. The quantum query complexity of Element Distinctness is known to be Θ(N2/3)\Theta(N^{2/3}); the polynomial method gives a tight lower bound for any input alphabet, while a tight adversary construction was only known for alphabets of size Ω(N2)\Omega(N^2). We construct a tight Ω(N2/3)\Omega(N^{2/3}) adversary lower bound for Element Distinctness with minimal non-trivial alphabet size, which equals the length of the input. This result may help to improve lower bounds for other related query problems.Comment: 22 pages. v2: one figure added, updated references, and minor typos fixed. v3: minor typos fixe
    • …
    corecore