12 research outputs found

    On Multiplicative Sidon Sets

    Full text link
    Fix integers b>a1b>a\geq1 with g:=gcd(a,b)g:=\gcd(a,b). A set SNS\subseteq\mathbb{N} is \emph{{a,b}\{a,b\}-multiplicative} if axbyax\neq by for all x,ySx,y\in S. For all nn, we determine an {a,b}\{a,b\}-multiplicative set with maximum cardinality in [n][n], and conclude that the maximum density of an {a,b}\{a,b\}-multiplicative set is bb+g\frac{b}{b+g}. For A,BNA, B \subseteq \mathbb{N}, a set SNS\subseteq\mathbb{N} is \emph{{A,B}\{A,B\}-multiplicative} if ax=byax=by implies a=ba = b and x=yx = y for all aAa\in A and bBb\in B, and x,ySx,y\in S. For 1<a<b<c1 < a < b < c and a,b,ca, b, c coprime, we give an O(1) time algorithm to approximate the maximum density of an {{a},{b,c}}\{\{a\},\{b,c\}\}-multiplicative set to arbitrary given precision

    The 2-distance coloring of the Cartesian product of cycles using optimal Lee codes

    Get PDF
    AbstractLet Cm be the cycle of length m. We denote the Cartesian product of n copies of Cm by G(n,m):=Cm□Cm□⋯□Cm. The k-distance chromatic number χk(G) of a graph G is χ(Gk) where Gk is the kth power of the graph G=(V,E) in which two distinct vertices are adjacent in Gk if and only if their distance in G is at most k. The k-distance chromatic number of G(n,m) is related to optimal codes over the ring of integers modulo m with minimum Lee distance k+1. In this paper, we consider χ2(G(n,m)) for n=3 and m≥3. In particular, we compute exact values of χ2(G(3,m)) for 3≤m≤8 and m=4k, and upper bounds for m=3k or m=5k, for any positive integer k. We also show that the maximal size of a code in Z63 with minimum Lee distance 3 is 26

    The Fine-Grained Complexity of Computing the Tutte Polynomial of a Linear Matroid

    Full text link
    We show that computing the Tutte polynomial of a linear matroid of dimension kk on kO(1)k^{O(1)} points over a field of kO(1)k^{O(1)} elements requires kΩ(k)k^{\Omega(k)} time unless the \#ETH---a counting extension of the Exponential Time Hypothesis of Impagliazzo and Paturi [CCC 1999] due to Dell {\em et al.} [ACM TALG 2014]---is false. This holds also for linear matroids that admit a representation where every point is associated to a vector with at most two nonzero coordinates. We also show that the same is true for computing the Tutte polynomial of a binary matroid of dimension kk on kO(1)k^{O(1)} points with at most three nonzero coordinates in each point's vector. This is in sharp contrast to computing the Tutte polynomial of a kk-vertex graph (that is, the Tutte polynomial of a {\em graphic} matroid of dimension kk---which is representable in dimension kk over the binary field so that every vector has two nonzero coordinates), which is known to be computable in 2kkO(1)2^k k^{O(1)} time [Bj\"orklund {\em et al.}, FOCS 2008]. Our lower-bound proofs proceed via (i) a connection due to Crapo and Rota [1970] between the number of tuples of codewords of full support and the Tutte polynomial of the matroid associated with the code; (ii) an earlier-established \#ETH-hardness of counting the solutions to a bipartite (d,2)(d,2)-CSP on nn vertices in do(n)d^{o(n)} time; and (iii) new embeddings of such CSP instances as questions about codewords of full support in a linear code. We complement these lower bounds with two algorithm designs. The first design computes the Tutte polynomial of a linear matroid of dimension~kk on kO(1)k^{O(1)} points in kO(k)k^{O(k)} operations. The second design generalizes the Bj\"orklund~{\em et al.} algorithm and runs in qk+1kO(1)q^{k+1}k^{O(1)} time for linear matroids of dimension kk defined over the qq-element field by kO(1)k^{O(1)} points with at most two nonzero coordinates each.Comment: This version adds Theorem

    Combinatorics

    Get PDF
    This is the report on the Oberwolfach workshop on Combinatorics, held 1–7 January 2006. Combinatorics is a branch of mathematics studying families of mainly, but not exclusively, finite or countable structures – discrete objects. The discrete objects considered in the workshop were graphs, set systems, discrete geometries, and matrices. The programme consisted of 15 invited lectures, 18 contributed talks, and a problem session focusing on recent developments in graph theory, coding theory, discrete geometry, extremal combinatorics, Ramsey theory, theoretical computer science, and probabilistic combinatorics

    Subject Index Volumes 1–200

    Get PDF

    31th International Symposium on Theoretical Aspects of Computer Science: STACS '14, March 5th to March 8th, 2014, Lyon, France

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore