239 research outputs found

    Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

    Get PDF
    A kk-bisection of a bridgeless cubic graph GG is a 22-colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes (monochromatic components in what follows) have order at most kk. Ban and Linial conjectured that every bridgeless cubic graph admits a 22-bisection except for the Petersen graph. A similar problem for the edge set of cubic graphs has been studied: Wormald conjectured that every cubic graph GG with ∣E(G)∣≡0(mod2)|E(G)| \equiv 0 \pmod 2 has a 22-edge colouring such that the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose components are paths). Finally, Ando conjectured that every cubic graph admits a bisection such that the two induced monochromatic subgraphs are isomorphic. In this paper, we give a detailed insight into the conjectures of Ban-Linial and Wormald and provide evidence of a strong relation of both of them with Ando's conjecture. Furthermore, we also give computational and theoretical evidence in their support. As a result, we pose some open problems stronger than the above mentioned conjectures. Moreover, we prove Ban-Linial's conjecture for cubic cycle permutation graphs. As a by-product of studying 22-edge colourings of cubic graphs having linear forests as monochromatic components, we also give a negative answer to a problem posed by Jackson and Wormald about certain decompositions of cubic graphs into linear forests.Comment: 33 pages; submitted for publicatio

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, ℓ\ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,ℓ)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,ℓ)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=qℓ−1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    The Complexity of Counting Homomorphisms to Cactus Graphs Modulo 2

    Full text link
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class parity-P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.Comment: minor change

    Decomposing cubic graphs into isomorphic linear forests

    Full text link
    A common problem in graph colouring seeks to decompose the edge set of a given graph into few similar and simple subgraphs, under certain divisibility conditions. In 1987 Wormald conjectured that the edges of every cubic graph on 4n4n vertices can be partitioned into two isomorphic linear forests. We prove this conjecture for large connected cubic graphs. Our proof uses a wide range of probabilistic tools in conjunction with intricate structural analysis, and introduces a variety of local recolouring techniques.Comment: 49 pages, many figure
    • …
    corecore