39 research outputs found

    Clique coloring B1B_1-EPG graphs

    Full text link
    We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 22-clique colorable. In this paper we prove that B1B_1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 44-clique colorable. Moreover, given a B1B_1-EPG representation of a graph, we provide a linear time algorithm that constructs a 44-clique coloring of it.Comment: 9 Page

    On clique-colouring of graphs with few P4's

    Get PDF
    Abstract Let G=(V,E) be a graph with n vertices. A clique-colouring of a graph is a colouring of its vertices such that no maximal clique of size at least two is monocoloured. A k-clique-colouring is a clique-colouring that uses k colours. The clique-chromatic number of a graph G is the minimum k such that G has a k-clique-colouring. In this paper we will use the primeval decomposition technique to find the clique-chromatic number and the clique-colouring of well known classes of graphs that in some local sense contain few P 4's. In particular we shall consider the classes of extended P 4-laden graphs, p-trees (graphs which contain exactly n−3 P 4's) and (q,q−3)-graphs, q≥7, such that no set of at most q vertices induces more that q−3 distincts P 4's. As corollary we shall derive the clique-chromatic number and the clique-colouring of the classes of cographs, P 4-reducible graphs, P 4-sparse graphs, extended P 4-reducible graphs, extended P 4-sparse graphs, P 4-extendible graphs, P 4-lite graphs, P 4-tidy graphs and P 4-laden graphs that are included in the class of extended P 4-laden graphs

    B1-EPG graphs are 4-clique colorable

    Get PDF
    We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Facultad de Ciencias Exacta

    B1-EPG graphs are 4-clique colorable

    Get PDF
    We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Facultad de Ciencias Exacta

    Clique coloring B1-EPG graphs

    Get PDF
    We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Facultad de Ciencias Exacta

    A lower bound on the hypergraph Ramsey number R(4,5;3)

    Get PDF
    The finite version of Ramsey's theorem says that for positive integers r, k, a_1,... ,a_r, there exists a least number n=R(a_1, \ldots, a_r; k) so that if X is an n-element set and all k-subsets of X are r-coloured, then there exists an i and an a_i-set A so that all k-subsets of A are coloured with the ith colour.In this paper, the bound R(4, 5; 3) >= 35 is shown by using a SAT solver to construct a red--blue colouring of the triples chosen from a 34-element set

    B1-EPG graphs are 4-clique colorable

    Get PDF
    We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Facultad de Ciencias Exacta
    corecore