3,636 research outputs found

    Robust Motion Segmentation from Pairwise Matches

    Full text link
    In this paper we address a classification problem that has not been considered before, namely motion segmentation given pairwise matches only. Our contribution to this unexplored task is a novel formulation of motion segmentation as a two-step process. First, motion segmentation is performed on image pairs independently. Secondly, we combine independent pairwise segmentation results in a robust way into the final globally consistent segmentation. Our approach is inspired by the success of averaging methods. We demonstrate in simulated as well as in real experiments that our method is very effective in reducing the errors in the pairwise motion segmentation and can cope with large number of mismatches

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Automatic Vehicle Trajectory Extraction by Aerial Remote Sensing

    Get PDF
    Research in road users’ behaviour typically depends on detailed observational data availability, particularly if the interest is in driving behaviour modelling. Among this type of data, vehicle trajectories are an important source of information for traffic flow theory, driving behaviour modelling, innovation in traffic management and safety and environmental studies. Recent developments in sensing technologies and image processing algorithms reduced the resources (time and costs) required for detailed traffic data collection, promoting the feasibility of site-based and vehicle-based naturalistic driving observation. For testing the core models of a traffic microsimulation application for safety assessment, vehicle trajectories were collected by remote sensing on a typical Portuguese suburban motorway. Multiple short flights over a stretch of an urban motorway allowed for the collection of several partial vehicle trajectories. In this paper the technical details of each step of the methodology used is presented: image collection, image processing, vehicle identification and vehicle tracking. To collect the images, a high-resolution camera was mounted on an aircraft's gyroscopic platform. The camera was connected to a DGPS for extraction of the camera position and allowed the collection of high resolution images at a low frame rate of 2s. After generic image orthorrectification using the flight details and the terrain model, computer vision techniques were used for fine rectification: the scale-invariant feature transform algorithm was used for detection and description of image features, and the random sample consensus algorithm for feature matching. Vehicle detection was carried out by median-based background subtraction. After the computation of the detected foreground and the shadow detection using a spectral ratio technique, region segmentation was used to identify candidates for vehicle positions. Finally, vehicles were tracked using a k- shortest disjoints paths algorithm. This approach allows for the optimization of an entire set of trajectories against all possible position candidates using motion-based optimization. Besides the importance of a new trajectory dataset that allows the development of new behavioural models and the validation of existing ones, this paper also describes the application of state-of-the-art algorithms and methods that significantly minimize the resources needed for such data collection. Keywords: Vehicle trajectories extraction, Driver behaviour, Remote sensin

    Visual Representation of Text in Web Documents and Its Interpretation

    No full text
    This paper examines the uses of text and its representation on Web documents in terms of the challenges in its interpretation. Particular attention is paid to the significant problem of non-uniform representation of text. This non-uniformity is mainly due to the presence of semantically important text in image form as opposed to the standard encoded text. The issues surrounding text representation in Web documents are discussed in the context of colour perception and spatial representation. The characteristics of the representation of text in image form are examined and research towards interpreting these images of text is briefly described

    Visual Representation of Text in Web Documents and Its Interpretation

    No full text
    This paper examines the uses of text and its representation on Web documents in terms of the challenges in its interpretation. Particular attention is paid to the significant problem of non-uniform representation of text. This non-uniformity is mainly due to the presence of semantically important text in image form as opposed to the standard encoded text. The issues surrounding text representation in Web documents are discussed in the context of colour perception and spatial representation. The characteristics of the representation of text in image form are examined and research towards interpreting these images of text is briefly described

    Video-based Smoke Detection Algorithms: A Chronological Survey

    Get PDF
    Over the past decade, several vision-based algorithms proposed in literature have resulted into development of a large number of techniques for detection of smoke and fire from video images. Video-based smoke detection approaches are becoming practical alternatives to the conventional fire detection methods due to their numerous advantages such as early fire detection, fast response, non-contact, absence of spatial limits, ability to provide live video that conveys fire progress information, and capability to provide forensic evidence for fire investigations. This paper provides a chronological survey of different video-based smoke detection methods that are available in literatures from 1998 to 2014.Though the paper is not aimed at performing comparative analysis of the surveyed methods, perceived strengths and weakness of the different methods are identified as this will be useful for future research in video-based smoke or fire detection. Keywords: Early fire detection, video-based smoke detection, algorithms, computer vision, image processing

    Enhanced target detection in CCTV network system using colour constancy

    Get PDF
    The focus of this research is to study how targets can be more faithfully detected in a multi-camera CCTV network system using spectral feature for the detection. The objective of the work is to develop colour constancy (CC) methodology to help maintain the spectral feature of the scene into a constant stable state irrespective of variable illuminations and camera calibration issues. Unlike previous work in the field of target detection, two versions of CC algorithms have been developed during the course of this work which are capable to maintain colour constancy for every image pixel in the scene: 1) a method termed as Enhanced Luminance Reflectance CC (ELRCC) which consists of a pixel-wise sigmoid function for an adaptive dynamic range compression, 2) Enhanced Target Detection and Recognition Colour Constancy (ETDCC) algorithm which employs a bidirectional pixel-wise non-linear transfer PWNLTF function, a centre-surround luminance enhancement and a Grey Edge white balancing routine. The effectiveness of target detections for all developed CC algorithms have been validated using multi-camera ‘Imagery Library for Intelligent Detection Systems’ (iLIDS), ‘Performance Evaluation of Tracking and Surveillance’ (PETS) and ‘Ground Truth Colour Chart’ (GTCC) datasets. It is shown that the developed CC algorithms have enhanced target detection efficiency by over 175% compared with that without CC enhancement. The contribution of this research has been one journal paper published in the Optical Engineering together with 3 conference papers in the subject of research
    corecore