274 research outputs found

    Probabilistic mixture-based image modelling

    Get PDF
    summary:During the last decade we have introduced probabilistic mixture models into image modelling area, which present highly atypical and extremely demanding applications for these models. This difficulty arises from the necessity to model tens thousands correlated data simultaneously and to reliably learn such unusually complex mixture models. Presented paper surveys these novel generative colour image models based on multivariate discrete, Gaussian or Bernoulli mixtures, respectively and demonstrates their major advantages and drawbacks on texture modelling applications. Our mixture models are restricted to represent two-dimensional visual information. Thus a measured 3D multi-spectral texture is spectrally factorized and corresponding multivariate mixture models are further learned from single orthogonal mono-spectral components and used to synthesise and enlarge these mono-spectral factor components. Texture synthesis is based on easy computation of arbitrary conditional distributions from the model. Finally single synthesised mono-spectral texture planes are transformed into the required synthetic multi-spectral texture. Such models can easily serve not only for texture enlargement but also for segmentation, restoration, and retrieval or to model single factors in unusually complex seven dimensional Bidirectional Texture Function (BTF) space models. The strengths and weaknesses of the presented discrete, Gaussian or Bernoulli mixture based approaches are demonstrated on several colour texture examples

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Discriminant Functions And Their Misclassification Errors

    Get PDF
    This paper is a survey study on discriminant functions and their misclassiïŹcation errors. Here we consider three groups of discriminant functions, namely discriminant functions for respec- tively multivariate normal variables, multivariate binary variables, and a mixture of multivariate binary and normal variables. Finally we derive their misclassiïŹcation errors

    Statistical models for natural scene data

    Get PDF
    This thesis considers statistical modelling of natural image data. Obtaining advances in this field can have significant impact for both engineering applications, and for the understanding of the human visual system. Several recent advances in natural image modelling have been obtained with the use of unsupervised feature learning. We consider a class of such models, restricted Boltzmann machines (RBMs), used in many recent state-of-the-art image models. We develop extensions of these stochastic artificial neural networks, and use them as a basis for building more effective image models, and tools for computational vision. We first develop a novel framework for obtaining Boltzmann machines, in which the hidden unit activations co-transform with transformed input stimuli in a stable and predictable way throughout the network. We define such models to be transformation equivariant. Such properties have been shown useful for computer vision systems, and have been motivational for example in the development of steerable filters, a widely used classical feature extraction technique. Translation equivariant feature sharing has been the standard method for scaling image models beyond patch-sized data to large images. In our framework we extend shallow and deep models to account for other kinds of transformations as well, focusing on in-plane rotations. Motivated by the unsatisfactory results of current generative natural image models, we take a step back, and evaluate whether they are able to model a subclass of the data, natural image textures. This is a necessary subcomponent of any credible model for visual scenes. We assess the performance of a state- of-the-art model of natural images for texture generation, using a dataset and evaluation techniques from in prior work. We also perform a dissection of the model architecture, uncovering the properties important for good performance. Building on this, we develop structured extensions for more complicated data comprised of textures from multiple classes, using the single-texture model architecture as a basis. These models are shown to be able to produce state-of-the-art texture synthesis results quantitatively, and are also effective qualitatively. It is demonstrated empirically that the developed multiple-texture framework provides a means to generate images of differently textured regions, more generic globally varying textures, and can also be used for texture interpolation, where the approach is radically dfferent from the others in the area. Finally we consider visual boundary prediction from natural images. The work aims to improve understanding of Boltzmann machines in the generation of image segment boundaries, and to investigate deep neural network architectures for learning the boundary detection problem. The developed networks (which avoid several hand-crafted model and feature designs commonly used for the problem), produce the fastest reported inference times in the literature, combined with state-of-the-art performance

    Cluster validity in clustering methods

    Get PDF

    Action recognition in depth videos using nonparametric probabilistic graphical models

    Get PDF
    Action recognition involves automatically labelling videos that contain human motion with action classes. It has applications in diverse areas such as smart surveillance, human computer interaction and content retrieval. The recent advent of depth sensing technology that produces depth image sequences has offered opportunities to solve the challenging action recognition problem. The depth images facilitate robust estimation of a human skeleton’s 3D joint positions and a high level action can be inferred from a sequence of these joint positions. A natural way to model a sequence of joint positions is to use a graphical model that describes probabilistic dependencies between the observed joint positions and some hidden state variables. A problem with these models is that the number of hidden states must be fixed a priori even though for many applications this number is not known in advance. This thesis proposes nonparametric variants of graphical models with the number of hidden states automatically inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet Process as a prior over the model’s infinite dimensional parameter space. This thesis describes three original constructions of nonparametric graphical models that are applied in the classification of actions in depth videos. Firstly, the action classes are represented by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The formulation enables information sharing and discriminative learning of parameters. Secondly, a hierarchical HMM with an unbounded number of actions and poses is used to represent activities. The construction produces a simplified model for activity classification by using logistic regression to capture the relationship between action states and activity labels. Finally, the action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of intermediate hidden states learned from data. Tractable inference procedures based on Markov Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with multiple benchmark datasets confirm the efficacy of the proposed approaches for action recognition

    Authentication of paintings using hidden markov modelling of contourlet coefficients

    Get PDF

    Generative probabilistic models for image retrieval

    Get PDF
    Searching for information is a recurring problem that almost everyone has faced at some point. Being in a library looking for a book, searching through newspapers and magazines for an old article or searching through emails for an old conversation with a colleague are some examples of the searching activity. These are some of the many situations where someone; the “user”; has some vague idea of the information he is looking for; an “information need”; and is searching through a large number of documents, emails or articles; “information items”; to find the most “relevant” item for his purpose. In this thesis we study the problem of retrieving images from large image archives. We consider two different approaches for image retrieval. The first approach is content based image retrieval where the user is searching images using a query image. The second approach is semantic retrieval where the users expresses his query using keywords. We proposed a unified framework to treat both approaches using generative probabilistic models in order to rank and classify images with respect to user queries. The methodology presented in this Thesis is evaluated on a real image collection and compared against state of the art methods

    DISCRIMINANT FUNCTIONS AND THEIR MISCLASSIFICATION ERRORS

    Get PDF
    This paper is a survey study on discriminant functions and their misclassiïŹcation errors. Here we consider three groups of discriminant functions, namely discriminant functions for respec- tively multivariate normal variables, multivariate binary variables, and a mixture of multivariate binary and normal variables. Finally we derive their misclassiïŹcation errors
    • 

    corecore