28,366 research outputs found

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    A colour preference technique to evaluate acrylamide-induced toxicity in zebrafish

    Get PDF
    The zebrafish has become a commonly used vertebrate model for toxicity assessment, of particular relevance to the study of toxic effects on the visual system because of the structural similarities shared by zebrafish and human retinae. In this article we present a colour preference-based technique that, by assessing the functionality of photoreceptors, can be used to evaluate the effects of toxicity on behaviour. A digital camera was used to record the locomotor behaviour of individual zebrafish swimming in a water tank consisting of two compartments separated by an opaque perforated wall through which the fish could pass. The colour of the lighting in each compartment could be altered independently (producing distinct but connected environments of white, red or blue) to allow association of the zebrafish's swimming behaviour with its colour preference. The functionality of the photoreceptors was evaluated based on the ability of the zebrafish to sense the different colours and to swim between the compartments. The zebrafish tracking was carried out using our algorithm developed with MATLAB. We found that zebrafish preferred blue illumination to white, and white illumination to red. Acute treatment with acrylamide (2 mM for 36 h) resulted in a marked reduction in locomotion and a concomitant loss of colour-preferential swimming behaviour. Histopathological examination of acrylamide-treated zebrafish eyes showed that acrylamide exposure had caused retinal damage. The colour preference tracking technique has applications in the assessment of neurodegenerative disorders, as a method for preclinical appraisal of drug efficacy and for behavioural evaluation of toxicity

    The science of color and color vision

    Get PDF
    A survey of color science and color vision

    Impossible shadows and lightness constancy

    Get PDF
    The intersection between an illumination and a reflectance edge is characterised by the `ratio-invariant' property, that is the luminance ratio of the regions under different illumination remains the same. In a CRT experiment, we shaped two areas, one surrounding the other, and simulated an illumination edge dividing them in two frames of illumination. The portion of the illumina- tion edge standing on the surrounding area (labelled contextual background) was the contextual edge, while the portion standing on the enclosed area (labelled mediating background) was the mediating edge. On the mediating background, there were two patches, one per illumination frame. Observers were asked to adjust the luminance of the patch in bright illumination to equate the lightness of the other. We compared conditions in which the luminance ratio at the contextual edge could be (i) equal (possible shadow), or (ii) larger (impossible shadow) than that at the mediating edge. In addition, we manipulated the reflectance of the backgrounds. It could be higher for the contextual than for the mediating background; or, vice versa, lower for the contextual than for the mediating background. Results reveal that lightness constancy significantly increases when: (i) the luminance ratio at the contextual edge is larger than that at the mediating edge creating an impossible shadow, and (ii) the reflectance of the contextual background is lower than that of the mediating one. We interpret our results according to the albedo hypothesis, and suggest that the scission process is facilitated when the luminance ratio at the contextual edge is larger than that at the mediating edge and/or the reflectance of the including area is lower than that of the included one. This occurs even if the ratio-invariant property is violated

    Photometric, geometric and perceptual factors in illumination-independent lightness constancy

    Get PDF
    It has been shown that lightness constancy depends on the articulation of the visual field (Agostini & Galmonte, 1999). However, among researchers there is little agreement about the meaning of “articulation.” Beyond the terminological heterogeneity, an important issue remains: What factors are relevant for the stability of surface color perception? Using stimuli with two fields of illumination, we explore this issue in three experiments. In Experiment 1, we manipulated the number of luminances, the number of reflectances, and the number of surfaces and their spatial relationships; in Experiment 2, we manipulated the luminance range; finally, in Experiment 3 we varied the number of surfaces crossed by the illumination edge. We found that there are two relevant factors in optimizing lightness constancy: (1) the lowest luminance in shadow and (2) the co-presence of patches of equal reflectance in both fields of illumination. The latter effect is larger if these patches strongly belong to each other. We interpret these findings within the albedo hypothesis

    Lightness constancy: ratio invariance and luminance profile

    Get PDF
    The term simultaneous lightness constancy describes the capacity of the visual system to perceive equal reflecting surfaces as having the same lightness despite lying in different illumination fields. In some cases, however, a lightness constancy failure occurs; that is, equal reflecting surfaces appear different in lightness when differently illuminated. An open question is whether the luminance profile of the illumination edges affects simultaneous lightness constancy even when the ratio invariance property of the illumination edges is preserved. To explore this issue, we ran two experiments by using bipartite illumination displays. Both the luminance profile of an illumination edge and the luminance ratio amplitude between the illumination fields were manipulated. Results revealed that the simultaneous lightness constancy increases when the luminance profile of the illumination edge is gradual (rather than sharp) and homogeneous (rather than inhomogeneous), whereas it decreases when the luminance ratio between the illumination fields is enlarged. The results are interpreted according to the layer decomposition schema, stating that the visual system splits the luminance into perceived lightness and apparent illumination components. We suggest that illumination edges having gradual and homogeneous luminance profiles facilitate the luminance decomposition process, whereas wide luminance ratios impede it

    Colour layering and colour constancy

    Get PDF
    Loosely put, colour constancy for example occurs when you experience a partly shadowed wall to be uniformly coloured, or experience your favourite shirt to be the same colour both with and without sunglasses on. Controversy ensues when one seeks to interpret ‘experience’ in these contexts, for evidence of a constant colour may be indicative a constant colour in the objective world, a judgement that a constant colour would be present were things thus and so, et cetera. My primary aim is to articulate a viable conception of Present Constancy, of what occurs when a constant colour is present in experience, despite the additional presence of some experienced colour variation (e.g., correlating to a change in illumination). My proposed conception involves experienced colour layering – experiencing one opaque colour through another transparent one – and in particular requires one of those experienced layers to remain constant while the other changes. The aim is not to propose this layering conception of colour constancy as the correct interpretation of all constancy cases, but rather to develop the conception enough to demonstrate how it could and plausibly should be applied to various cases, and the virtues it has over rivals. Its virtues include a seamless application to constancy cases involving variations in filters (e.g., sunglasses) and illuminants; its ability to accommodate experiences of partial colours and error-free interpretations of difficult cases; and its broad theoretical-neutrality, allowing it to be incorporated into numerous perceptual epistemologies and ontologies. If layered constancy is prevalent, as I suspect it is, then our experiential access to colours is critically nuanced: we have been plunged into a world of colour without being told that we will rarely, if ever, look to a location and experience just one of them

    Making light count

    Get PDF

    Bumblebee search time without ultraviolet light

    Get PDF
    corecore