568 research outputs found

    Colour Constancy for Image of Non-Uniformly Lit Scenes

    Get PDF
    This paper presents a colour constancy algorithm for images of scenes lit by non-uniform light sources. The proposed method determines number of colour regions within the image using a histogram-based algorithm. It then applies the K-means++ algorithm on the input image, dividing the image into its segments. The proposed algorithm computes the normalized average absolute difference (NAAD) for each segment’s coefficients and uses it as a measure to determine if the segment’s coefficients have sufficient colour variations. The initial colour constancy adjustment factors for each segment with sufficient colour variation is calculated based on the principle that the average values of colour components of the image are achromatic. The colour constancy adjustment weighting factors (CCAWF) for each pixel of image are determined by fusing the CCAWFs of the segments’ with sufficient colour variations, weighted by their normalized Euclidian distance of the pixel from the center of the segments. Experimental results were generated using both indoor and outdoor benchmark images from the scene illuminated by single or multiple illuminants. Results show that the proposed method outperforms the state of the art techniques subjectively and objectively

    Colour Constancy for Image of Non-Uniformly Lit Scenes

    Get PDF
    Digital camera sensors are designed to record all incident light from a captured scene but they are unable to distinguish between the colour of the light source and the true colour of objects. The resulting captured image exhibits a colour cast toward the colour of light source. This paper presents a colour constancy algorithm for images of scenes lit by non-uniform light sources. The proposed algorithm uses a histogram-based algorithm to determine the number of colour regions. It then applies the K-means++ algorithm on the input image, dividing the image into its segments. The proposed algorithm computes the Normalized Average Absolute Difference (NAAD) for each segment and uses it as a measure to determine if the segment has sufficient colour variations. The initial colour constancy adjustment factors for each segment with sufficient colour variation is calculated. The Colour Constancy Adjustment Weighting Factors (CCAWF) for each pixel of the image are determined by fusing the CCAWFs of the segments, weighted by their normalized Euclidian distance of the pixel from the center of the segments. Results show that the proposed method outperforms the statistical techniques and its images exhibit significantly higher subjective quality to those of the learning-based methods. In addition, the execution time of the proposed algorithm is comparable to statistical-based techniques and is much lower than those of the state-of-the-art learning-based methods

    Illuminant Segmentation in Non-uniformly Lit Scenes

    Get PDF

    Colour Constancy For Non‐Uniform Illuminant using Image Textures

    Get PDF
    Colour constancy (CC) is the ability to perceive the true colour of the scene on its image regardless of the scene’s illuminant changes. Colour constancy is a significant part of the digital image processing pipeline, more precisely, where true colour of the object is needed. Most existing CC algorithms assume a uniform illuminant across the whole scene of the image, which is not always the case. Hence, their performance is influenced by the presence of multiple light sources. This paper presents a colour constancy algorithm using image texture for uniform/non-uniformly lit scene images. The propose algorithm applies the K-means algorithm to segment the input image based on its different colour feature. Each segment’s texture is then extracted using the Entropy analysis algorithm. The colour information of the texture pixels is then used to calculate initial colour constancy adjustment factor for each segment. Finally, the colour constancy adjustment factors for each pixel within the image is determined by fusing the colour constancy of all segment regulated by the Euclidian distance of each pixel from the centre of the segments. Experimental results on both single and multiple illuminant image datasets show that the proposed algorithm outperforms the existing state of the art colour constancy algorithms, particularly when the images lit by multiple light sources

    The Computation of Surface Lightness in Simple and Complex Scenes

    Get PDF
    The present thesis examined how reflectance properties and the complexity of surface mesostructure (small-scale surface relief) influence perceived lightness in centresurround displays. Chapters 2 and 3 evaluated the role of surface relief, gloss, and interreflections on lightness constancy, which was examined across changes in background albedo and illumination level. For surfaces with visible mesostructure (“rocky” surfaces), lightness constancy across changes in background albedo was better for targets embedded in glossy versus matte surfaces. However, this improved lightness constancy for gloss was not observed when illumination varied. Control experiments compared the matte and glossy rocky surrounds to two control displays, which matched either pixel histograms or a phase-scrambled power spectrum. Lightness constancy was improved for rocky glossy displays over the histogram-matched displays, but not compared to phase-scrambled variants of these images with equated power spectrums. The results were similar for surfaces rendered with 1, 2, 3 and 4 interreflections. These results suggest that lightness perception in complex centre-surround displays can be explained by the distribution of contrast across space and scale, independently of explicit information about surface shading or specularity. The results for surfaces without surface relief (“homogeneous” surfaces) differed qualitatively to rocky surfaces, exhibiting abrupt steps in perceived lightness at points at which the targets transitioned from being increments to decrements. Chapter 4 examined whether homogeneous displays evoke more complex mid-level representations similar to conditions of transparency. Matching target lightness in a homogeneous display to that in a textured or rocky display required varying both lightness and transmittance of the test patch on the textured display to obtain the most satisfactory matches. However, transmittance was only varied to match the contrast of targets against homogeneous surrounds, and not to explicitly match the amount of transparency perceived in the displays. The results suggest perceived target-surround edge contrast differs between homogeneous and textured displays. Varying the mid-level property of transparency in textured displays provides a natural means for equating both target lightness and the unique appearance of the edge contrast in homogeneous displays

    Colour Helmholtz Stereopsis for Reconstruction of Complex Dynamic Scenes

    Get PDF
    Helmholtz Stereopsis (HS) is a powerful technique for reconstruction of scenes with arbitrary reflectance properties. However, previous formulations have been limited to static objects due to the requirement to sequentially capture reciprocal image pairs (i.e. two images with the camera and light source positions mutually interchanged). In this paper, we propose colour HS-a novel variant of the technique based on wavelength multiplexing. To address the new set of challenges introduced by multispectral data acquisition, the proposed novel pipeline for colour HS uniquely combines a tailored photometric calibration for multiple camera/light source pairs, a novel procedure for surface chromaticity calibration and the state-of-the-art Bayesian HS suitable for reconstruction from a minimal number of reciprocal pairs. Experimental results including quantitative and qualitative evaluation demonstrate that the method is suitable for flexible (single-shot) reconstruction of static scenes and reconstruction of dynamic scenes with complex surface reflectance properties
    • 

    corecore