32 research outputs found

    A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution

    Get PDF
    This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online

    Converting Optical Videos to Infrared Videos Using Attention GAN and Its Impact on Target Detection and Classification Performance

    Get PDF
    To apply powerful deep-learning-based algorithms for object detection and classification in infrared videos, it is necessary to have more training data in order to build high-performance models. However, in many surveillance applications, one can have a lot more optical videos than infrared videos. This lack of IR video datasets can be mitigated if optical-to-infrared video conversion is possible. In this paper, we present a new approach for converting optical videos to infrared videos using deep learning. The basic idea is to focus on target areas using attention generative adversarial network (attention GAN), which will preserve the fidelity of target areas. The approach does not require paired images. The performance of the proposed attention GAN has been demonstrated using objective and subjective evaluations. Most importantly, the impact of attention GAN has been demonstrated in improved target detection and classification performance using real-infrared videos

    Hyperspectral Data Analysis and Visualization

    Get PDF

    Automated rapid thermal imaging systems technology

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 266-276).A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy auditing processes that include infrared thermography inspection as an important tool to assess deficiencies and identify hot thermal gradients. This process is prohibitively expensive and time consuming. I propose fundamentally changing this approach by designing, developing, and deploying an Automated Rapid Thermal Imaging Systems Technology (ARTIST) which is capable of street level drive-by scanning in real-time. I am doing for thermal imaging what Google Earth did for visual imaging. I am mapping the world's temperature, window by window, house by house, street by street, city by city, and country by country. In doing so, I will be able to provide detailed information on where and how we are wasting energy, providing the information needed for sound economic and environmental energy policies and identifying what corrective measures can and should be taken. The fundamental contributions of this thesis relates to the ARTIST. This thesis will focus on the following topics: * Multi-camera synthetic aperture imaging system * 3D Radiometry * Non-radiometric infrared camera calibration techniques * Image enhancement algorithms - Hyper Resolution o Kinetic Super Resolution - Thermal Signature Identification - Low-Light Signal-to-Noise Enhancement using KSRby Long N. Phan.Ph.D

    Orientation and integration of images and image blocks with laser scanning data

    Get PDF
    Laser scanning and photogrammetry are methods for effective and accurate measurement and classification of urban and forest areas. Because these methods complement each other, then integration or integrated use brings additional benefits to real-life applications. However, finding tie features between data sets is a challenging task since laser scanning and imagery are far from each other in nature. The aim of this thesis was to create methods for solving relative orientations between laser scanning data and imagery that would assist in near-future applications integrating laser scanning and photogrammetry. Moreover, a further goal was to create methods enabling the use of data acquired from very different perspectives, such as terrestrial and airborne data. To meet these aims, an interactive orientation method enabling the use of single images, stereo images or larger image blocks was developed and tested. The multi-view approach usually has a significant advantage over the use of a single image. After accurate orientation of laser scanning data and imagery, versatile applications become available. Such applications include, e.g., automatic object recognition, accurate classification of individual trees, point cloud densification, automatic classification of land use, system calibration, and generation of photorealistic 3D models. Besides the orientation part, another aim of the research was to investigate how to fuse or use these two data types together in applications. As a result, examples that evaluated the behavior of laser point clouds in both urban and forestry areas, detection and visualization of temporal changes, enhanced data understanding, stereo visualization, multi-source and multi-angle data fusion, point cloud colorizing, and detailed examination of full waveform laser scanning data were given

    Sparse modelling of natural images and compressive sensing

    Get PDF
    This thesis concerns the study of the statistics of natural images and compressive sensing for two main objectives: 1) to extend our understanding of the regularities exhibited by natural images of the visual world we regularly view around us, and 2) to incorporate this knowledge into image processing applications. Previous work on image statistics has uncovered remarkable behavior of the dis tributions obtained from filtering natural images. Typically we observe high kurtosis, non-Gaussian distributions with sharp central cusps, which are called sparse in the literature. These results have become an accepted fact through empirical findings us ing zero mean filters on many different databases of natural scenes. The observations have played an important role in computational and biological applications, where re searchers have sought to understand visual processes through studying the statistical properties of the objects that are being observed. Interestingly, such results on sparse distributions also share elements with the emerging field of compressive sensing. This is a novel sampling protocol where one seeks to measure a signal in already com pressed format through randomised projections, while the recovery algorithm consists of searching for a constrained solution with the sparsest transformed coefficients. In view of prior art, we extend our knowledge of image statistics from the monochrome domain into the colour domain. We study sparse response distributions of filters constructed on colour channels and observe the regularity of the distributions across diverse datasets of natural images. Several solutions to image processing problems emerge from the incorporation of colour statistics as prior information. We give a Bayesian treatment to the problem of colorizing natural gray images, and formulate image compression schemes using elements of compressive sensing and sparsity. We also propose a denoising algorithm that utilises the sparse filter responses as a regular- isation function for the effective attenuation of Gaussian and impulse noise in images. The results emanating from this body of work illustrate how the statistics of natural images, when incorporated with Bayesian inference and sparse recovery, can have deep implications for image processing applications

    Computational Video Enhancement

    Get PDF
    During a video, each scene element is often imaged many times by the sensor. I propose that by combining information from each captured frame throughout the video it is possible to enhance the entire video. This concept is the basis of computational video enhancement. In this dissertation, the viability of computational video processing is explored in addition to presenting applications where this processing method can be leveraged. Spatio-temporal volumes are employed as a framework for efficient computational video processing, and I extend them by introducing sheared volumes. Shearing provides spatial frame warping for alignment between frames, allowing temporally-adjacent samples to be processed using traditional editing and filtering approaches. An efficient filter-graph framework is presented to support this processing along with a prototype video editing and manipulation tool utilizing that framework. To demonstrate the integration of samples from multiple frames, I introduce methods for improving poorly exposed low-light videos to achieve improved results. This integration is guided by a tone-mapping process to determine spatially-varying optimal exposures and an adaptive spatio-temporal filter to integrate the samples. Low-light video enhancement is also addressed in the multispectral domain by combining visible and infrared samples. This is facilitated by the use of a novel multispectral edge-preserving filter to enhance only the visible spectrum video. Finally, the temporal characteristics of videos are altered by a computational video resampling process. By resampling the video-rate footage, novel time-lapse sequences are found that optimize for user-specified characteristics. Each resulting shorter video is a more faithful summary of the original source than a traditional time-lapse video. Simultaneously, new synthetic exposures are generated to alter the output video's aliasing characteristics
    corecore