338 research outputs found

    Aligned plane drawings of the generalized Delaunay-graphs for pseudo-disks

    Full text link
    We study general Delaunay-graphs, which are natural generalizations of Delaunay triangulations to arbitrary families, in particular to pseudo-disks. We prove that for any finite pseudo-disk family and point set, there is a plane drawing of their Delaunay-graph such that every edge lies inside every pseudo-disk that contains its endpoints

    Coloring Intersection Hypergraphs of Pseudo-Disks

    Get PDF
    We prove that the intersection hypergraph of a family of n pseudo-disks with respect to another family of pseudo-disks admits a proper coloring with 4 colors and a conflict-free coloring with O(log n) colors. Along the way we prove that the respective Delaunay-graph is planar. We also prove that the intersection hypergraph of a family of n regions with linear union complexity with respect to a family of pseudo-disks admits a proper coloring with constantly many colors and a conflict-free coloring with O(log n) colors. Our results serve as a common generalization and strengthening of many earlier results, including ones about proper and conflict-free coloring points with respect to pseudo-disks, coloring regions of linear union complexity with respect to points and coloring disks with respect to disks

    Conflict-Free Coloring of Intersection Graphs of Geometric Objects

    Full text link
    In FOCS'2002, Even et al. introduced and studied the notion of conflict-free colorings of geometrically defined hypergraphs. They motivated it by frequency assignment problems in cellular networks. This notion has been extensively studied since then. A conflict-free coloring of a graph is a coloring of its vertices such that the neighborhood (pointed or closed) of each vertex contains a vertex whose color differs from the colors of all other vertices in that neighborhood. In this paper we study conflict-colorings of intersection graphs of geometric objects. We show that any intersection graph of n pseudo-discs in the plane admits a conflict-free coloring with O(\log n) colors, with respect to both closed and pointed neighborhoods. We also show that the latter bound is asymptotically sharp. Using our methods, we also obtain a strengthening of the two main results of Even et al. which we believe is of independent interest. In particular, in view of the original motivation to study such colorings, this strengthening suggests further applications to frequency assignment in wireless networks. Finally, we present bounds on the number of colors needed for conflict-free colorings of other classes of intersection graphs, including intersection graphs of axis-parallel rectangles and of \rho-fat objects in the plane.Comment: 18 page

    Proper coloring of geometric hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored such that any member of F that contains at least m points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then m = 3 is sufficient. We prove that when F is the family of all homothetic copies of a given convex polygon, then such an m exists. We also study the problem in higher dimensions. © Balázs Keszegh and Dömötör Pálvölgyi

    On the number of hyperedges in the hypergraph of lines and pseudo-discs

    Get PDF
    Consider the hypergraph whose vertex set is a family of nn lines in general position in the plane, and whose hyperedges are induced by intersections with a family of pseudo-discs. We prove that the number of tt-hyperedges is bounded by Ot(n2)O_t(n^2) and that the total number of hyperedges is bounded by O(n3)O(n^3). Both bounds are tight.Comment: Significantly improved results, with two additional authors. 7 pages, 1 figur
    • …
    corecore