23 research outputs found

    Riordan graphs I : structural properties

    Get PDF
    In this paper, we use the theory of Riordan matrices to introduce the notion of a Riordan graph. The Riordan graphs are a far-reaching generalization of the well known and well studied Pascal graphs and Toeplitz graphs, and also some other fami- lies of graphs. The Riordan graphs are proved to have a number of interesting (fractal) properties, which can be useful in creating computer networks with certain desirable features, or in obtaining useful information when designing algorithms to compute values of graph invariants. The main focus in this paper is the study of structural properties of families of Riordan graphs obtained from infinite Riordan graphs, which includes a fundamental decomposition theorem and certain conditions on Riordan graphs to have an Eulerian trail/cycle or a Hamiltonian cycle. We will study spectral properties of the Riordan graphs in a follow up paper

    ON THE EMBEDDING OF GROUPS AND DESIGNS IN A DIFFERENCE BLOCK DESIGN

    Get PDF
    A difference BIBD is a balanced incomplete block design on a group which isconstructed by transferring a regular perfect difference system by a subgroup of its point set. There is an obvious bijection between these BIBDs and some copies of their point sets as two sets. In this paper, we investigate the algebraic structure of these block designs by definning a group-isomorphism between them and their point sets. It has done by defning some relations between the independent-graphs of difference BIBDs and some Cayley graphs of their point sets. It is shown that some Cayley graphs are embedded in the independent-graph of difference BIBDs as a spanning sub-graphs. Due to find these relations, we find out a configuration ordering on these BIBDs, also we achieve some results about the classification of these BIBDs. All in this paper are on difference BIBDs with even numbers of the points

    Subject Index Volumes 1–200

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Polynomial systems : graphical structure, geometry, and applications

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 199-208).Solving systems of polynomial equations is a foundational problem in computational mathematics, that has several applications in the sciences and engineering. A closely related problem, also prevalent in applications, is that of optimizing polynomial functions subject to polynomial constraints. In this thesis we propose novel methods for both of these tasks. By taking advantage of the graphical and geometrical structure of the problem, our methods can achieve higher efficiency, and we can also prove better guarantees. Various problems in areas such as robotics, power systems, computer vision, cryptography, and chemical reaction networks, can be modeled by systems of polynomial equations, and in many cases the resulting systems have a simple sparsity structure. In the first part of this thesis we represent this sparsity structure with a graph, and study the algorithmic and complexity consequences of this graphical abstraction. Our main contribution is the introduction of a novel data structure, chordal networks, that always preserves the underlying graphical structure of the system. Remarkably, many interesting families of polynomial systems admit compact chordal network representations (of size linear in the number of variables), even though the number of components is exponentially large. Our methods outperform existing techniques by orders of magnitude in applications from algebraic statistics and vector addition systems. We then turn our attention to the study of graphical structure in the computation of matrix permanents, a classical problem from computer science. We provide a novel algorithm that requires Õ(n 2[superscript w]) arithmetic operations, where [superscript w] is the treewidth of its bipartite adjacency graph. We also investigate the complexity of some related problems, including mixed discriminants, hyperdeterminants, and mixed volumes. Although seemingly unrelated to polynomial systems, our results have natural implications on the complexity of solving sparse systems. The second part of this thesis focuses on the problem of minimizing a polynomial function subject to polynomial equality constraints. This problem captures many important applications, including Max-Cut, tensor low rank approximation, the triangulation problem, and rotation synchronization. Although these problems are nonconvex, tractable semidefinite programming (SDP) relaxations have been proposed. We introduce a methodology to derive more efficient (smaller) relaxations, by leveraging the geometrical structure of the underlying variety. The main idea behind our method is to describe the variety with a generic set of samples, instead of relying on an algebraic description. Our methods are particularly appealing for varieties that are easy to sample from, such as SO(n), Grassmannians, or rank k tensors. For arbitrary varieties we can take advantage of the tools from numerical algebraic geometry. Optimization problems from applications usually involve parameters (e.g., the data), and there is often a natural value of the parameters for which SDP relaxations solve the (polynomial) problem exactly. The final contribution of this thesis is to establish sufficient conditions (and quantitative bounds) under which SDP relaxations will continue to be exact as the parameter moves in a neighborhood of the original one. Our results can be used to show that several statistical estimation problems are solved exactly by SDP relaxations in the low noise regime. In particular, we prove this for the triangulation problem, rotation synchronization, rank one tensor approximation, and weighted orthogonal Procrustes.by Diego Cifuentes.Ph. D
    corecore