2,160 research outputs found

    Normal 6-edge-colorings of some bridgeless cubic graphs

    Full text link
    In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly five or exactly three distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors such that each edge of the graph is normal. We denote by Ο‡Nβ€²(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving Ο‡Nβ€²(G)≀5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 77-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 66-edge-coloring. Finally, we show that any bridgeless cubic graph GG admits a 66-edge-coloring such that at least 79β‹…βˆ£E∣\frac{7}{9}\cdot |E| edges of GG are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1804.0944

    Solving Graph Coloring Problems with Abstraction and Symmetry

    Get PDF
    This paper introduces a general methodology, based on abstraction and symmetry, that applies to solve hard graph edge-coloring problems and demonstrates its use to provide further evidence that the Ramsey number R(4,3,3)=30R(4,3,3)=30. The number R(4,3,3)R(4,3,3) is often presented as the unknown Ramsey number with the best chances of being found "soon". Yet, its precise value has remained unknown for more than 50 years. We illustrate our approach by showing that: (1) there are precisely 78{,}892 (3,3,3;13)(3,3,3;13) Ramsey colorings; and (2) if there exists a (4,3,3;30)(4,3,3;30) Ramsey coloring then it is (13,8,8) regular. Specifically each node has 13 edges in the first color, 8 in the second, and 8 in the third. We conjecture that these two results will help provide a proof that no (4,3,3;30)(4,3,3;30) Ramsey coloring exists implying that R(4,3,3)=30R(4,3,3)=30
    • …
    corecore