1,450 research outputs found

    On the Complexity of Local Distributed Graph Problems

    Full text link
    This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)(\Delta+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size nn of the network, while the best deterministic complexity is typically 2O(logn)2^{O(\sqrt{\log n})}. Understanding and narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logO(1)n\log^{O(1)} n rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)(\Delta+1)-coloring) in logO(1)n\log^{O(1)} n rounds in the LOCAL model. We show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    Recoloring bounded treewidth graphs

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic, a problem left open in Bonamy et al. (2012). Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring.Comment: 11 pages, 5 figure

    Problems and memories

    Full text link
    I state some open problems coming from joint work with Paul Erd\H{o}sComment: This is a paper form of the talk I gave on July 5, 2013 at the centennial conference in Budapest to honor Paul Erd\H{o}

    Recoloring graphs via tree decompositions

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We first improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic (which is optimal up to a constant factor), a problem left open in Bonamy et al. (2012). We also prove that given any two (χ(G)+1)(\chi(G)+1)-colorings of a cograph (resp. distance-hereditary graph) GG, we can find a linear (resp. quadratic) sequence between them. In both cases, the bounds cannot be improved by more than a constant factor for a fixed χ(G)\chi(G). The graph classes are also optimal in some sense: one of the smallest interesting superclass of distance-hereditary graphs corresponds to comparability graphs, for which no such property holds (even when relaxing the constraint on the length of the sequence). As for cographs, they are equivalently the graphs with no induced P4P_4, and there exist P5P_5-free graphs that admit no sequence between two of their (χ(G)+1)(\chi(G)+1)-colorings. All the proofs are constructivist and lead to polynomial-time recoloring algorithmComment: 20 pages, 8 figures, partial results already presented in http://arxiv.org/abs/1302.348

    Decompositions into subgraphs of small diameter

    Full text link
    We investigate decompositions of a graph into a small number of low diameter subgraphs. Let P(n,\epsilon,d) be the smallest k such that every graph G=(V,E) on n vertices has an edge partition E=E_0 \cup E_1 \cup ... \cup E_k such that |E_0| \leq \epsilon n^2 and for all 1 \leq i \leq k the diameter of the subgraph spanned by E_i is at most d. Using Szemer\'edi's regularity lemma, Polcyn and Ruci\'nski showed that P(n,\epsilon,4) is bounded above by a constant depending only \epsilon. This shows that every dense graph can be partitioned into a small number of ``small worlds'' provided that few edges can be ignored. Improving on their result, we determine P(n,\epsilon,d) within an absolute constant factor, showing that P(n,\epsilon,2) = \Theta(n) is unbounded for \epsilon n^{-1/2} and P(n,\epsilon,4) = \Theta(1/\epsilon) for \epsilon > n^{-1}. We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, R\"odl, Ruci\'nski, and Szemer\'edi.Comment: 18 page
    corecore