615 research outputs found

    Toric algebra of hypergraphs

    Full text link
    The edges of any hypergraph parametrize a monomial algebra called the edge subring of the hypergraph. We study presentation ideals of these edge subrings, and describe their generators in terms of balanced walks on hypergraphs. Our results generalize those for the defining ideals of edge subrings of graphs, which are well-known in the commutative algebra community, and popular in the algebraic statistics community. One of the motivations for studying toric ideals of hypergraphs comes from algebraic statistics, where generators of the toric ideal give a basis for random walks on fibers of the statistical model specified by the hypergraph. Further, understanding the structure of the generators gives insight into the model geometry.Comment: Section 3 is new: it explains connections to log-linear models in algebraic statistics and to combinatorial discrepancy. Section 6 (open problems) has been moderately revise

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    Ramsey numbers of Berge-hypergraphs and related structures

    Get PDF
    For a graph G=(V,E)G=(V,E), a hypergraph H\mathcal{H} is called a Berge-GG, denoted by BGBG, if there exists a bijection f:E(G)E(H)f: E(G) \to E(\mathcal{H}) such that for every eE(G)e \in E(G), ef(e)e \subseteq f(e). Let the Ramsey number Rr(BG,BG)R^r(BG,BG) be the smallest integer nn such that for any 22-edge-coloring of a complete rr-uniform hypergraph on nn vertices, there is a monochromatic Berge-GG subhypergraph. In this paper, we show that the 2-color Ramsey number of Berge cliques is linear. In particular, we show that R3(BKs,BKt)=s+t3R^3(BK_s, BK_t) = s+t-3 for s,t4s,t \geq 4 and max(s,t)5\max(s,t) \geq 5 where BKnBK_n is a Berge-KnK_n hypergraph. For higher uniformity, we show that R4(BKt,BKt)=t+1R^4(BK_t, BK_t) = t+1 for t6t\geq 6 and Rk(BKt,BKt)=tR^k(BK_t, BK_t)=t for k5k \geq 5 and tt sufficiently large. We also investigate the Ramsey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs.Comment: Updated to include suggestions of the refere

    The 1-2-3 Conjecture for Hypergraphs

    Full text link
    A weighting of the edges of a hypergraph is called vertex-coloring if the weighted degrees of the vertices yield a proper coloring of the graph, i.e., every edge contains at least two vertices with different weighted degrees. In this paper we show that such a weighting is possible from the weight set {1,2,...,r+1} for all hypergraphs with maximum edge size r>3 and not containing edges solely consisting of identical vertices. The number r+1 is best possible for this statement. Further, the weight set {1,2,3,4,5} is sufficient for all hypergraphs with maximum edge size 3, up to some trivial exceptions.Comment: 12 page
    corecore