2,018 research outputs found

    Efficient and Perfect domination on circular-arc graphs

    Full text link
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices V′⊆V(G)V' \subseteq V(G) such that each vertex v∈V(G)∖V′v \in V(G)\setminus V' is dominated by exactly one vertex v′∈V′v' \in V'. An \emph{efficient dominating set} is a perfect dominating set V′V' where V′V' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them

    On the structure of (pan, even hole)-free graphs

    Full text link
    A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our O(nm)O(nm)-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our O(n2.5+nm)O(n^{2.5}+nm)-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.Comment: Accepted to appear in the Journal of Graph Theor

    Extensions of Fractional Precolorings show Discontinuous Behavior

    Get PDF
    We study the following problem: given a real number k and integer d, what is the smallest epsilon such that any fractional (k+epsilon)-precoloring of vertices at pairwise distances at least d of a fractionally k-colorable graph can be extended to a fractional (k+epsilon)-coloring of the whole graph? The exact values of epsilon were known for k=2 and k\ge3 and any d. We determine the exact values of epsilon for k \in (2,3) if d=4, and k \in [2.5,3) if d=6, and give upper bounds for k \in (2,3) if d=5,7, and k \in (2,2.5) if d=6. Surprisingly, epsilon viewed as a function of k is discontinuous for all those values of d
    • …
    corecore