336 research outputs found

    A case study in digitizing a photographic collection

    Get PDF
    This paper reviews the processes involved in the digitisation, display and storage of medium size collections of photographs using mid-range commercially available equipment. Guidelines for evaluating the performance of these digitisation processes based on aspects of image quality are provided. A collection of photographic slides, representing first-generation analogue reproductions of a photographic collection from the nineteenth century, is treated as a case study. Constraints on the final image quality and the implications of digital archiving are discussed. Full descriptions of device characterisation and calibration procedures are given and results from objective measurements carried out to assess the digitisation system are presented. The important issues of file format, physical storage and data migration are also addressed

    Analysis of image noise in multispectral color acquisition

    Get PDF
    The design of a system for multispectral image capture will be influenced by the imaging application, such as image archiving, vision research, illuminant modification or improved (trichromatic) color reproduction. A key aspect of the system performance is the effect of noise, or error, when acquiring multiple color image records and processing of the data. This research provides an analysis that allows the prediction of the image-noise characteristics of systems for the capture of multispectral images. The effects of both detector noise and image processing quantization on the color information are considered, as is the correlation between the errors in the component signals. The above multivariate error-propagation analysis is then applied to an actual prototype system. Sources of image noise in both digital camera and image processing are related to colorimetric errors. Recommendations for detector characteristics and image processing for future systems are then discussed

    Color scanner calibration via a neural network",

    Get PDF
    Abstrac

    Colorimetric characterization of scanner by measures of perceptual color error

    Get PDF
    Author name used in this publication: John H. Xin2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Evaluation and optimal design of spectral sensitivities for digital color imaging

    Get PDF
    The quality of an image captured by color imaging system primarily depends on three factors: sensor spectral sensitivity, illumination and scene. While illumination is very important to be known, the sensitivity characteristics is critical to the success of imaging applications, and is necessary to be optimally designed under practical constraints. The ultimate image quality is judged subjectively by human visual system. This dissertation addresses the evaluation and optimal design of spectral sensitivity functions for digital color imaging devices. Color imaging fundamentals and device characterization are discussed in the first place. For the evaluation of spectral sensitivity functions, this dissertation concentrates on the consideration of imaging noise characteristics. Both signal-independent and signal-dependent noises form an imaging noise model and noises will be propagated while signal is processed. A new colorimetric quality metric, unified measure of goodness (UMG), which addresses color accuracy and noise performance simultaneously, is introduced and compared with other available quality metrics. Through comparison, UMG is designated as a primary evaluation metric. On the optimal design of spectral sensitivity functions, three generic approaches, optimization through enumeration evaluation, optimization of parameterized functions, and optimization of additional channel, are analyzed in the case of the filter fabrication process is unknown. Otherwise a hierarchical design approach is introduced, which emphasizes the use of the primary metric but the initial optimization results are refined through the application of multiple secondary metrics. Finally the validity of UMG as a primary metric and the hierarchical approach are experimentally tested and verified

    Multispectral acquisition of large-sized pictorial surfaces

    Get PDF
    Multispectral acquisition of artworks has recently received considerable attention in the image processing community. Quite understandably, so far this attention has mainly focused on paintings, given their predominant role in museum collections. It is worth pointing out that the instrumentation and procedures used for acquiring regular paintings are not suited for the multispectral acquisition of large-sized painted surfaces such as frescoed halls and great paintings. Given the relevance of such artifacts, and their widespread presence in churches or historical buildings due to their social function, the problem of finding suitable techniques for their acquisition is certainly worth addressing. This paper focuses on multispectral acquisition of large-sized pictorial surfaces, systematically addressing the practical issues related to the acquisition equipment and procedure. Given the crucial role played by the illumination in this application, special attention is given to this issue. The proposed approach is supported by experimental results

    Automated color correction for colorimetric applications using barcodes

    Get PDF
    [eng] Color-based sensor devices often offer qualitative solutions, where a material change its color from one color to another, and this is change is observed by a user who performs a manual reading. These materials change their color in response to changes in a certain physical or chemical magnitude. Nowadays, we can find colorimetric indicators with several sensing targets, such as: temperature, humidity, environmental gases, etc. The common approach to quantize these sensors is to place ad hoc electronic components, e.g., a reader device. With the rise of smartphone technology, the possibility to automatically acquire a digital image of those sensors and then compute a quantitative measure is near. By leveraging this measuring process to the smartphones, we avoid the use of ad hoc electronic components, thus reducing colorimetric application cost. However, there exists a challenge on how-to acquire the images of the colorimetric applications and how-to do it consistently, with the disparity of external factors affecting the measure, such as ambient light conditions or different camera modules. In this thesis, we tackle the challenges to digitize and quantize colorimetric applications, such as colorimetric indicators. We make a statement to use 2D barcodes, well-known computer vision patterns, as the base technology to overcome those challenges. We focus on four main challenges: (I) to capture barcodes on top of real-world challenging surfaces (bottles, food packages, etc.), which are the usual surface where colorimetric indicators are placed; (II) to define a new 2D barcode to embed colorimetric features in a back-compatible fashion; (III) to achieve image consistency when capturing images with smartphones by reviewing existent methods and proposing a new color correction method, based upon thin-plate splines mappings; and (IV) to demonstrate a specific application use case applied to a colorimetric indicator for sensing CO2 in the range of modified atmosphere packaging, MAP, one of the common food-packaging standards.[cat] Els dispositius de sensat basats en color, normalment ofereixen solucions qualitatives, en aquestes solucions un material canvia el seu color a un altre color, i aquest canvi de color és observat per un usuari que fa una mesura manual. Aquests materials canvien de color en resposta a un canvi en una magnitud física o química. Avui en dia, podem trobar indicadors colorimètrics que amb diferents objectius, per exemple: temperatura, humitat, gasos ambientals, etc. L'opció més comuna per quantitzar aquests sensors és l'ús d'electrònica addicional, és a dir, un lector. Amb l'augment de la tecnologia dels telèfons intel·ligents, la possibilitat d'automatitzar l'adquisició d'imatges digitals d'aquests sensors i després computar una mesura quantitativa és a prop. Desplaçant aquest procés de mesura als telèfons mòbils, evitem l'ús d'aquesta electrònica addicional, i així, es redueix el cost de l'aplicació colorimètrica. Tanmateix, existeixen reptes sobre com adquirir les imatges de les aplicacions colorimètriques i de com fer-ho de forma consistent, a causa de la disparitat de factors externs que afecten la mesura, com per exemple la llum ambient or les diferents càmeres utilitzades. En aquesta tesi, encarem els reptes de digitalitzar i quantitzar aplicacions colorimètriques, com els indicadors colorimètrics. Fem una proposició per utilitzar codis de barres en dues dimensions, que són coneguts patrons de visió per computador, com a base de la nostra tecnologia per superar aquests reptes. Ens focalitzem en quatre reptes principals: (I) capturar codis de barres sobre de superfícies del món real (ampolles, safates de menjar, etc.), que són les superfícies on usualment aquests indicadors colorimètrics estan situats; (II) definir un nou codi de barres en dues dimensions per encastar elements colorimètrics de forma retro-compatible; (III) aconseguir consistència en la captura d'imatges quan es capturen amb telèfons mòbils, revisant mètodes de correcció de color existents i proposant un nou mètode basat en transformacions geomètriques que utilitzen splines; i (IV) demostrar l'ús de la tecnologia en un cas específic aplicat a un indicador colorimètric per detectar CO2 en el rang per envasos amb atmosfera modificada, MAP, un dels estàndards en envasos de menjar.
    corecore